Invariance in Property Testing

Madhu Sudan MIT

Joint work with Elena Grigorescu & Tali Kaufman.

Property Testing

- Goal: "Efficiently" determine if some "data" "essentially" satisfies some given "property".
- Formalism:
 - Data: $f: D \to R$ given as oracle

 D finite, but huge. R finite, possibly small
 - Property: Given by $\mathcal{F} \subseteq \{f: D \to R\}$
 - **Efficiently:** o(D) queries into f. Even O(1)!
 - Essentially: Must accept if $f \in \mathcal{F}$ Ok to accept if $f \approx g \in \mathcal{F}$.

Property Testing

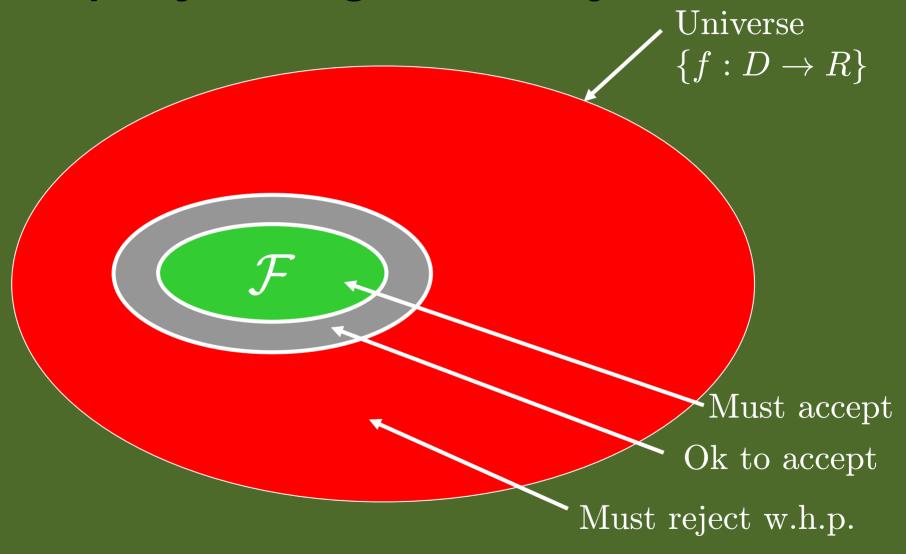
```
Distance: \delta(f,g) = \Pr_{x \in D}[f(x) \neq g(x)]
\delta(f,\mathcal{F}) = \min_{g \in \mathcal{F}} \{\delta(f,g)\}
f \approx_{\epsilon} g \text{ if } \delta(f,g) \leq \epsilon.
```

Definition: $\mathcal{F} \text{ is } (q, \alpha) \text{-locally testable if}$

 \exists a q-query tester that accepts $f \in \mathcal{F}$ with probability $1 - \epsilon$ rejects $f \notin \mathcal{F}$ with probability $\geq \alpha \cdot \delta(f, \mathcal{F})$.

Notes: q-locally testable implies $\exists \alpha > 0$ locally testable implies $\exists q = O(1)$

Property Testing (Pictorially)



Example: Pre-election Polling

- Domain = Population Range = $\{0, 1\}$
- Property: $\mathcal{F} = \text{functions with majority } 1$
- Essentially: Must reject w.h.p. if $\Pr_{x \in D}[f(x) = 1] \leq 1/2 - \epsilon$
- Efficiency? Can test weakly with $\tilde{O}(1/\epsilon^2)$ queries. Chernoff bounds.

Modern Day Example: Testing Linearity

- Domain = Vector space \mathbb{F}_2^n Range = Field \mathbb{F}_2
- Property: $\mathcal{F} = \text{linear functions}$ i.e., $\{f(x) = \langle a, x \rangle | a \in \mathbb{F}_2^n \}$
- Theorem [Blum, Luby, Rubinfeld '89]:
 Linearity is 3-locally testable.
- Test: Pick $x, y \in \mathbb{F}_2^n$ uniformly. Accept iff f(x) + f(y) = f(x + y)

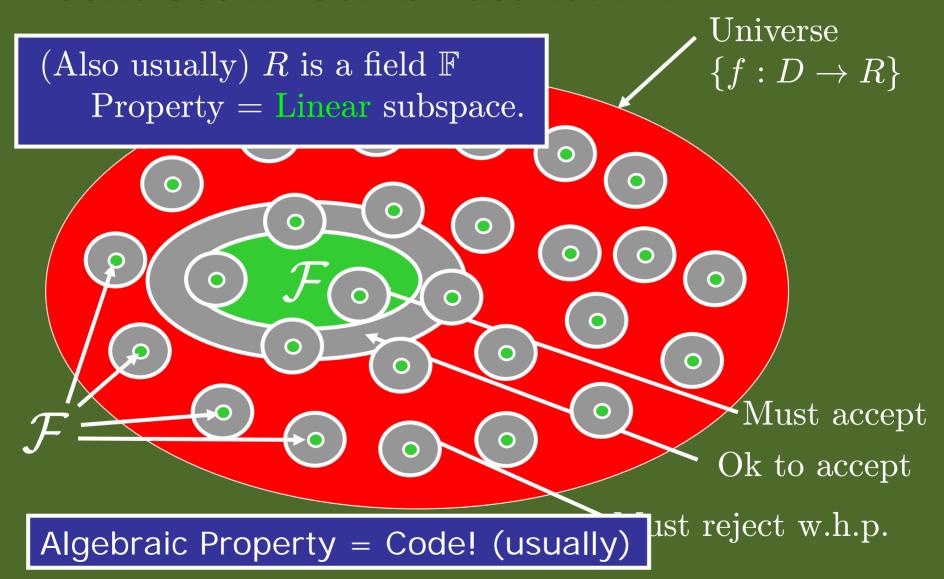
Property Testing: Abbreviated History

- Prehistoric: Statistical sampling
 - E.g., "Majority = 1?"
- Linearity Testing [BLR'90], Multilinearity Testing [Babai, Fortnow, Lund '91].
- Formal Definition: [Rubinfeld S'96]
- Graph/Combinatorial Property Testing [Goldreich, Goldwasser, Ron '96].
 - E.g., Is a graph "close" to being 3-colorable.
- Algebraic Testing [GLRSW,RS,FS,AKKLR,KR,JPSZ]
 - Is multivariate function a polynomial (of bounded degree).
- Graph Testing [Alon-Shapira, AFNS, Borgs et al.]
 - Characterizes graph properties that are testable.

Quest for this talk

- What makes a property testable?
- In particular for algebraic properties:
 - Current understanding:
 - Low-degree multivariate functions are testable.
 - Different proofs for different cases.
 - Linear functions
 - Low-degree polynomials
 - lacksquare Higher degree polynomials over \mathbb{F}_2
 - Higher degree polynomials over other fields

Contrast w. Combinatorial P.T.



Necessary Conditions for Testability

- One-sided error and testability:
 - Suppose f is rejected by a k-query 1-sided tester. Suppose queried points are $x_1, \ldots, x_k \in D$. Let $f(x_i) = \alpha_i$.
 - Then for every function $g \in \mathcal{F}$, $\langle g(x_1), \dots, g(x_k) \rangle \neq \langle \alpha_1, \dots, \alpha_k \rangle$.
- Constraint: $C = \langle x_1, \dots, x_k \rangle; S \subsetneq R^k$ $g \text{ satisfies } C \text{ if } \langle g(x_1), \dots, g(x_k) \rangle \in S$ $\mathcal{F} \text{ satisfies } C \text{ if every } g \in \mathcal{F} \text{ satisfies } C.$
- Conclusion: Testability implies Constraints.

Necessary Conditions for Testability

- One-sided error and testability:
 - Suppose f is rejected by a k-query 1-sided tester. Suppose queried points are $x_1, \ldots, x_k \in D$. Let $f(x_i) = \alpha_i$.
 - Then for every function $g \in \mathcal{F}$, $\langle g(x_1), \dots, g(x_k) \rangle \neq \langle \alpha_1, \dots, \alpha_k \rangle$.
- Constraint: $C = \langle x_1, \dots, x_k \rangle; S \subsetneq R^k$ $g \text{ satisfies } C \text{ if } \langle g(x_1), \dots, g(x_k) \rangle \in S$ $\mathcal{F} \text{ satisfies } C \text{ if every } g \in \mathcal{F} \text{ satisfies } C.$
- Conclusion: Testability implies Constraints.

Constraints, Characterizations, Testing

Strong testing:

Every $f \notin \mathcal{F}$ rejected by some k-local constraint. Set of k-local constraints characterize \mathcal{F} . $\exists C_1, \ldots, C_m \text{ s.t. } f \in \mathcal{F} \Leftrightarrow f \text{ satisfies } C_j \text{ for every } j.$

- Conclusion: Testability ⇒ Local Characterizations.
- Example:

```
f \subseteq {\mathbb{F}_2^n \to \mathbb{F}_2} is linear iff for all x, y \in \mathbb{F}_2^n, f satisfies C_{x,y} where C_{x,y} = \langle x, y, x + y \rangle; S = {000, 011, 101, 110}.
```

Characterizations Sufficient?

- NO! [Ben-Sasson, Harsha, Raskhodnikova]
 - Random 3-locally characterized errorcorrecting codes ("Expander Codes") are not o(D)-locally testable.
 - Property:

```
D = [n]; R = \{0, 1\};
```

 $\mathcal{F} = \text{set of functions that satisfy some}$ random 3-ary \mathbb{F}_2 -linear constraints.

- Criticism: Random constraints too "asymmetric".
- Perhaps should consider more "symmetric" properties.

Invariance & Property testing

Invariances (Automorphism groups):

```
For permutation \pi: D \to D, \mathcal{F} is \pi-invariant if f \in \mathcal{F} implies f \circ \pi \in \mathcal{F}.

Aut(\mathcal{F}) = \{\pi \mid \mathcal{F} \text{ is } \pi\text{-invariant}\}

Forms group under composition.
```

Hope: If Automorphism group is "large" (or "nice"), then property is testable.

Examples

Majority:

- Aut group = S_D (full group).
- Easy Fact: If $\operatorname{Aut}(\mathcal{F}) = S_D$ then \mathcal{F} is $\operatorname{poly}(R, 1/\epsilon)$ -locally testable.

Graph Properties:

- Aut. group given by renaming of vertices
- [AFNS, Borgs et al.] implies regular properties with this Aut group are testable.
- Statistical Properties: Closed under every permutation of domain and range.
- Algebraic Properties: What symmetries do they have? Will focus on this today.

Algebraic Properties & Invariances

Properties:

$$D = \mathbb{F}^n$$
, $R = \mathbb{F}$ (Linearity, Low-degree, Reed-Muller)
Or $D = \mathbb{K} \supseteq \mathbb{F}$, $R = \mathbb{F}$ (Dual-BCH) (\mathbb{K} , \mathbb{F} finite fields)

Automorphism groups?

Linear transformations of domain.

$$\pi(x) = Ax \text{ where } A \in \mathbb{F}^{n \times n}$$
 (Linear-Invariant)

Additional restriction: Linearity

$$f, g \in \mathcal{F} \text{ and } \alpha, \beta \in \mathbb{F} \text{ implies } \alpha f + \beta g \in \mathcal{F}$$

Question: Are Linear, Linear-Invariant, Locally Characterized Properties Testable?

Linear-Invariance & Testability

- Question: Are Linear, Linear-Invariant, Locally Characterized Properties Testable?
 - Why?
 - Unifies previous results on Prop. Testing.
 - (Will show it also is non-trivial extension)
 - Nice family of 2-transitive group of symmetries.
 - Conjecture [Alon, Kaufman, Krivelevich, Litsyn, Ron]: Linear code with k-local constraint and 2transitive group of symmetries must be testable.

Our Results

- Theorem 1: $\mathcal{F} \subseteq \{\mathbb{K}^n \to \mathbb{F}\}$ linear, linear-invariant, k-locally characterized implies \mathcal{F} is $f(\mathbb{K}, k)$ -locally testable.
- Theorem 2: $\mathcal{F} \subseteq \{\mathbb{K}^n \to \mathbb{F}\}\$ linear, affine-invariant, has k-local constraint implies \mathcal{F} is $f(\mathbb{K}, k)$ -locally testable.
- Other stuff:
 - Study of Linear-invariant Properties.
 - Counterexample to AKKLR conjecture.

Linear Invariant Properties

Examples of Linear-Invariant Families

- Polynomials in $\mathbb{F}[x_1,\ldots,x_n]$ of degree at most d
- Traces of Poly in $\mathbb{K}[x_1,\ldots,x_n]$ of degree at most d
- (Traces of) Homogenous polynomials of degree d
- $-\mathcal{F}_1 + \mathcal{F}_2$, where \mathcal{F}_1 , \mathcal{F}_2 are linear-invariant. Polynomials supported by degree 2, 3, 5, 7 monomials.

What Dictates Locality of Characterizations?

- Precise locality not yet understood:

 Depends on p-ary representation of degrees.

 Example: \mathcal{F} supported by monomials $x^{p^i+p^j}$ behaves like degree two polynomial
- For affine-invariant family dictated (coarsely) by highest degree monomial in family
- For some linear-invariant families, can be *much* less than the highest degree monomial.

```
Example: \mathbb{K} = \mathbb{F} = \mathbb{F}_7; \mathcal{F} = \mathcal{F}_1 + \mathcal{F}_2

\mathcal{F}_1 = \text{poly of degree at most } 16

\mathcal{F}_2 = \text{poly supported on monomials of degree } 3 \mod 6.

\text{Degree}(\mathcal{F}) = \Omega(n); \text{Locality}(\mathcal{F}) \leq 49.
```

Analysis Ingredients

Monomial Extraction:

E.g.,
$$xy^2 + xyz + x^4 \in \mathcal{F}$$
 implies $xyz \in \mathcal{F}$

Monomial Spread:

$$x^5 \in \mathcal{F}$$
 implies x^4y, x^3y^2 also in \mathcal{F} (if char(\mathbb{F}) large)

Suffices for affine-invariant families.

For linear-invariant families, need to define the right parameter and bound locality weakly in terms of it.

Local Testing

Key Notion: Single Orbit Property

- \mathcal{F} has single orbit property if $\exists \text{ a single constraint } C = (\langle x_1, \dots, x_k \rangle, S) \text{ such that}$ $\{C \circ \pi\}_{\pi \in \text{Aut}(\mathcal{F})} \text{ characterize } \mathcal{F}.$
- Single orbit property applies to all known algebraic properties, possibly with the exception of BCH codes.
 - Theorem: Every linear invariant \mathcal{F} with a k-local characterization, has the single orbit property under some $f(k, \mathbb{K})$ -local constraint
 - Theorem: If \mathcal{F} has single orbit property with a k-local constraint (with some restrictions) then it is k-locally testable.

BLR (and our) analysis

The tests

BLR: Pick $x, y \in \mathbb{R}^n$ and check f(x) + f(y) = f(x + y)

Need to show:

$$\exists g \text{ s.t. } \delta(f,g) \leq C \cdot \Pr_{x,y}[f(x) + f(y) \neq f(x+y)]$$

lacksquare Ours: $\mathcal F$ given by $x_1,\ldots,x_k;V$

Pick linear/affine $L: \mathbb{K}^n \to \mathbb{K}^n$ at random Verify $\langle f(L(x_1)), \dots, f(L(x_k)) \rangle \in V$

Need to show $\exists g \in \mathcal{F} \text{ s.t.}$

$$\delta(f,g) \leq C \cdot \Pr_L[\langle f(L(x_1)), \dots, f(L(x_k)) \rangle \not\in V]$$

BLR Analysis: Outline

- Have f s.t. $\Pr_{x,y}[f(x) + f(y) \neq f(x+y)] = \delta < 1/20$. Want to show f close to some $g \in \mathcal{F}$.
- Define $g(x) = \text{most likely}_y \{ f(x + y) f(y) \}$.
- If f close to \mathcal{F} then g will be in \mathcal{F} and close to f.
- But if f not close? g may not even be uniquely defined!
- Steps:
 - Step 0: Prove f close to g
 - Step 1: Prove most likely is overwhelming majority.
 - Step 2: Prove that g is in \mathcal{F} .

• Define $g(x) = \text{most likely } _{y} \{ f(x+y) - f(y) \}.$

Claim:
$$\Pr_x[f(x) \neq g(x)] \leq 2\delta$$

- Let
$$\mathbf{B} = \{x | \Pr_y[f(x) \neq f(x+y) - f(y)] \ge \frac{1}{2} \}$$

- $\Pr_{x,y}[\text{linearity test rejects } | x \in B] \ge \frac{1}{2}$

$$\Rightarrow \Pr_x[x \in B] \le 2\delta$$

$$- \text{ If } x \not\in B \text{ then } f(x) = g(x)$$

- Define $g(x) = \text{most likely } _{y} \{ f(x+y) f(y) \}.$
- Suppose for some x, \exists two equally likely values. Presumably, only one leads to linear x, so which one?
- If we wish to show g linear, then need to rule out this case.

Lemma: $\forall x, \Pr_{y,z}[\overline{\text{Vote}_x(y)} \neq \overline{\text{Vote}_x(z)}] \leq 4\delta$

- Define $g(x) = \text{most likely } _{y} \{ f(x+y) f(y) \}.$
- Suppose for some x, \exists two equally likely values. Presumably, only one leads to linear x, so which one?
- If we wish to show g linear, then need to rule out this case.

Lemma: $\forall x, \Pr_{y,z}[\text{Vote}_x(y) \neq \text{Vote}_x(z))] \leq 4\delta$

 $\overline{ ext{Vote}}_x(y)$

• Define $g(x) = \text{most likely } _{y} \{ f(x+y) - f(y) \}.$

Lemma: $\forall x, \Pr_{y,z}[\text{Vote}_x(y) \neq \text{Vote}_x(z))] \leq 4\delta$

?	f(y)	-f(x+y)	
f(z)	f(y+z)	-f(y+2z)	-
-f(x+z)	-f(2y+z)	f(x+2y+2z)	←

Prob. Row/column sum non-zero $\leq \delta$.

 $Vote_x(y)$

• Define $g(x) = \text{most likely } y\{f(x+y) - f(y)\}.$

Lemma: $\forall x, \Pr_{y,z}[\text{Vote}_x(y) \neq \text{Vote}_x(z))] \leq 4\delta$

?	f(y)	-f(x+y)	
f(z)	f(y+z)	-f(y+2z)	
-f(x+z)	-f(2y+z)	f(x+2y+2z)	-

Prob. Row/column sum non-zero $\leq \delta$.

BLR Analysis: Step 2 (Similar)

Lemma: If $\delta < \frac{1}{20}$, then $\forall x, y, g(x) + g(y) = g(x + y)$

g(x)	g(y)	-g(x+y)	Prob. Row/column sum non-zero $\leq 4\delta$.
f(z)	f(y+z)	-f(y+2z)	
-f(x+z)	-f(2y+z)	f(x+2y+2z)	

UTA: Invariance in Property Testing

May 1, 2009

Our Analysis: Outline

- f s.t. $\Pr_L[\langle f(L(x_1), \dots, f(L(x_k)) \rangle \in V] = \delta \ll 1.$
- Define $g(\mathbf{x}) = \alpha$ that maximizes $\Pr_{\{L|L(x_1)=\mathbf{x}\}}[\langle \alpha, f(L(x_2)), \dots, f(L(x_k)) \rangle \in V]$

- Steps:
 - Step 0: Prove f close to g
 - Step 1: Prove "most likely" is overwhelming majority.
 - Step 2: Prove that g is in \mathcal{F} .

Our Analysis: Outline

- f s.t. $\Pr_L[\langle f(L(x_1), \dots, f(L(x_k)) \rangle \in V] = \delta \ll 1.$
- Define $g(\mathbf{x}) = \alpha$ that maximizes $\Pr_{\{L|L(x_1)=\mathbf{x}\}}[\langle \alpha, f(L(x_2)), \dots, f(L(x_k)) \rangle \in V]$

Same as before

- Steps:
 - Step 0: Prove f close to g
 - Step 1: Prove "most likely" is overwhelming majority.
 - Step 2: Prove that g is in \mathcal{F} .

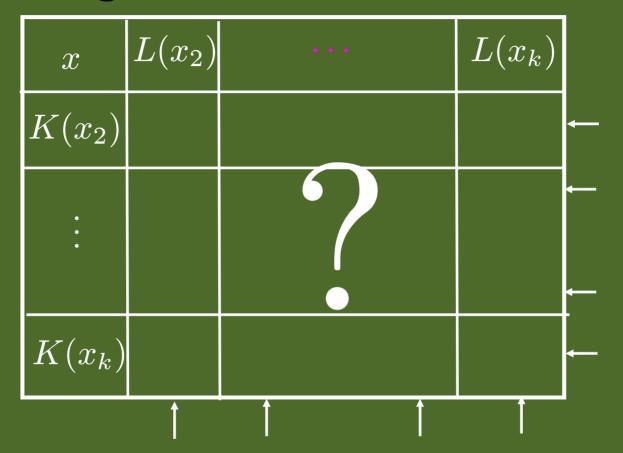
Matrix Magic?

• Define $g(\mathbf{x}) = \alpha$ that maximizes $\Pr_{\{L|L(x_1)=\mathbf{x}\}}[\langle \alpha, f(L(x_2)), \dots, f(L(x_k)) \rangle \in V]$

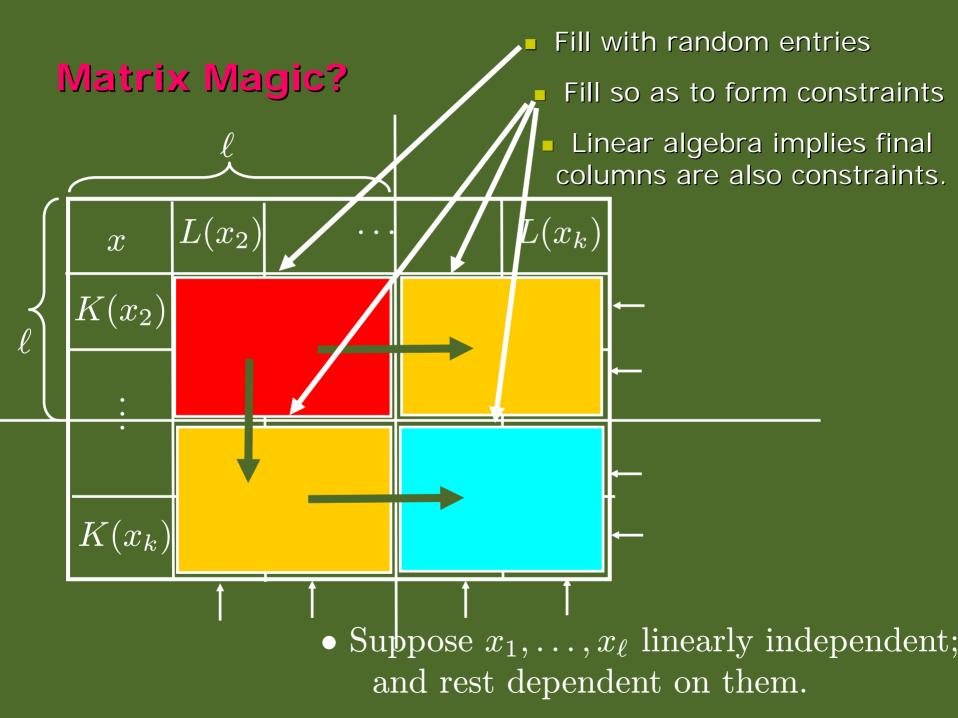
Lemma:
$$\forall x, \Pr_{L,K}[\operatorname{Vote}_x(L) \neq \operatorname{Vote}_x(K))] \leq 2(k-1)\delta$$

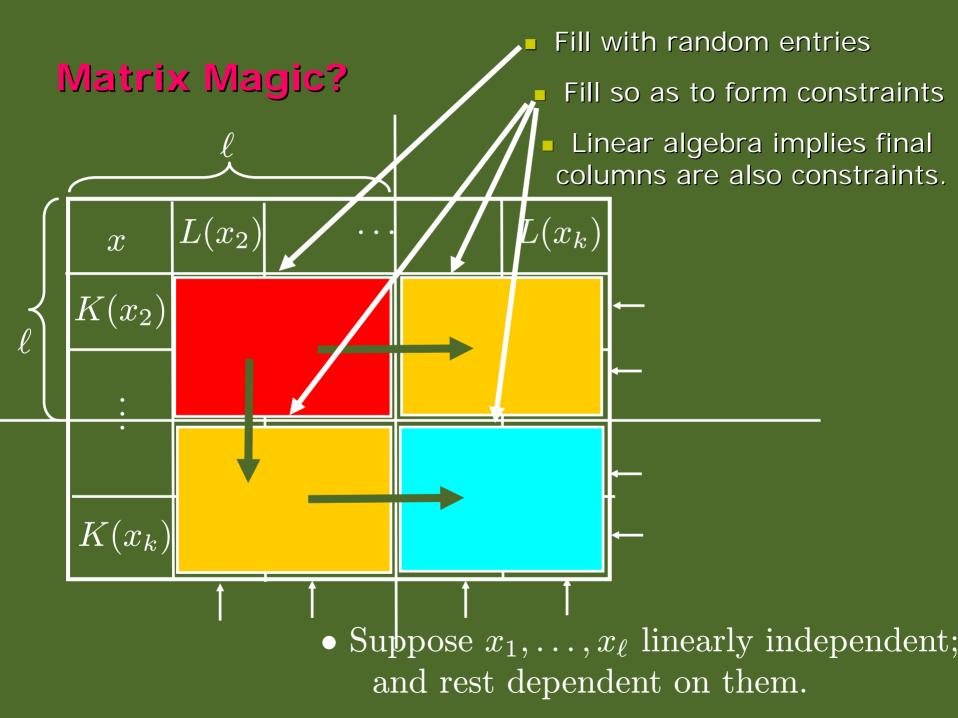
x	$L(x_2)$	• • •	$L(x_k)$
$K(x_2)$			
:			
$K(x_k)$			

Matrix Magic?



- Want marked rows to be random constraints.
- Suppose x_1, \ldots, x_ℓ linearly independent; and rest dependent on them.





Conclusions

- Invariance is important in property testing.
- Linear-invariance suffices to explain many algebraic tests (and shows some new ones).
- Future work: What are other invariances that lead to testability (from characterizations)?