Beer Therapy

- At Oberwolfach in 2003, Ralf Kötter and Madhu Sudan had a week long beer drinking competition.
- Who do you think won?

Vote early, vote often
Local Algorithms & Error-correction

Madhu Sudan
MIT
Beer Therapy

- At Oberwolfach in 2003, Ralf Kötter and Madhu Sudan had a week long beer drinking competition.
- Who do you think won?

Ralf

Information

Madhu

Computation
Dedicated to Ralf Kötter

• Dear friend to many ...
• Wise beyond his age
• Happy spirit

... I’ll miss him dearly.
... I already do.
Prelude

- Algorithmic Problems in Coding Theory
- New Paradigm in Algorithms
- The Marriage: Local Error-Detection & Correction
Algorithmic Problems in Coding Theory

- **Code:** \(E : \Sigma^k \rightarrow \Sigma^n \); Image\((E) = C \subseteq \Sigma^n \);
 \[R(C) = k/n, \delta(C) = \text{normalized distance}. \]

- **Encoding:** Fix Code \(C \) and associated \(E : \Sigma^k \rightarrow \Sigma^n \).
 Given \(m \in \Sigma^k \), compute \(E(m) \).

- **Error-detection (\(\epsilon \)-Testing):**
 Given \(x \in \Sigma^n \), decide if \(\exists m \in \Sigma^k \) s.t. \(x = E(m) \).
 Given \(x \in \Sigma^n \), decide if \(\exists m \in \Sigma^k \) s.t. \(\delta(E(m), x) \leq \epsilon \).

- **Error-correction (Decoding):**
 Given \(x \in \Sigma^n \), compute \(m \in \Sigma^k \) that minimizes \(\delta(E(m), x) \) (provided \(\delta(E(m), x) \leq \epsilon \)).
Sublinear time algorithmics

- Given \(f : \{0, 1\}^k \rightarrow \{0, 1\}^n \) can it be “computed” in \(o(k, n) \) time?

 \[
 f(x) \quad \text{where} \quad x' \approx x
 \]

- Answer 2: YES, if we are willing to:
 1. Present input implicitly (by an oracle).
 2. Represent output implicitly
 3. Compute \(f \) function on approximation to input.

Extends to computing relations as well.
Sub-linear time algorithms

- Initiated in late eighties in context of
 - Program checking [BlumKannan, BlumLubyRubinfeld]
 - Interactive Proofs/PCPs [BabaiFortnowLund]
- Now successful in many more contexts
 - Property testing/Graph-theoretic algorithms
 - Sorting/Searching
 - Statistics/Entropy computations
 - (High-dim.) Computational geometry
- Many initial results are coding-theoretic!
Sub-linear time algorithms & Coding

- Encoding: Not reasonable to expect in sub-linear time.

 - In fact many initial results do so!

- Codes that admit efficient ...
 - ... testing: Locally Testable Codes (LTCs)
 - ... decoding: Locally Decodable Codes (LDCs).
Rest of this talk

- Definitions of LDCs and LTCs
- Quick description of known results
- The first result: Hadamard codes
- Some basic constructions
- Recent constructions of LDCs.
 - [Yekhanin, Raghavendra, Efremenko]
Definitions
Locally Decodable Code

Code: $C : \Sigma^k \rightarrow \Sigma^n$ is (q, ϵ)-Locally Decodable if \exists Decoder D s.t. given $i \in [k]$ and oracle w s.t. $\exists m \; \delta(w, C(m)) \leq \epsilon \leq \delta(C)/2$, $D(i)$ reads $q(n)$ random positions of w and outputs m_i w.p. at least $2/3$.

What if $\epsilon > \delta(C)/2$? Might need to report a list of upto ℓ codewords.
Locally List-Decodable Code

Code: \(C \) is \((\epsilon, \ell)\)-list-decodable if \(\forall w \in \Sigma^n \),
\[
\text{\# codewords } c \in C \text{ s.t. } \delta(w, c) \leq \epsilon \text{ is at most } \ell.
\]
\(C \) is \((q, \epsilon, \ell)\)-locally list-decodable if \(\exists \) Decoder \(D \) s.t.
given \(i \in [k] \) and \(j \in [\ell] \) and oracle \(w \) s.t.
\(m_1, \ldots, m_\ell \) are all messages satisfying \(\delta(w, C(m_j)) \leq \epsilon \)
\[
D(i, j) \text{ reads } q(n) \text{ random positions of } w
\]
and outputs \((m_j)_i \) w.p. at least \(2/3 \).
History of definitions

- Constructions predate formal definitions
 - [Goldreich-Levin ’89].
 - [Beaver-Feigenbaum ’90, Lipton ’91].
 - [Blum-Luby-Rubinfeld ’90].
- Hints at definition (in particular, interpretation in the context of error-correcting codes): [Babai-Fortnow-Levin-Szegedy ’91].
- Formal definitions
 - [S.-Trevisan-Vadhan ’99] (local list-decoding).
 - [Katz-Trevisan ’00]
Locally Testable Codes

Code: $C \subseteq \Sigma^n$ is (q, ϵ)-Locally Testable if \exists Tester T s.t.

n

T reads $q(n)$ random positions:
- If $w \in C$ accepts w.p. 1.
- If w is ϵ-far from C, then rejects w.p. $\geq 1/2$.

“Weak” definition: hinted at in [BFLS], explicit in [RS’96, Arora’94, Spielman’94, FS’95].
Strong Locally Testable Codes

Code: $C \subseteq \Sigma^n$ is (q, ϵ)-Locally Testable if \exists Tester T s.t.

- T reads $q(n)$ random positions:
 - If $w \in C$ accepts w.p. 1.
 - For every $w \in \Sigma^n$,
 - T rejects w.p. $\geq \Omega(\delta(w, C))$.

“Strong” Definition: [Goldreich-S. ’02]
Motivations
Local decoding: Average-case vs. worst-case

• Suppose $C \subseteq \Sigma^N$ is locally-decodable code for $N = 2^n$. (Further assume can locally decode bits of the codeword, and not just bits of the message.)

• $c \in C$ can be viewed as function $c : \{0, 1\}^n \rightarrow \Sigma$.

• Local decoding $\approx \Rightarrow$ can compute $c(x)$ for every x, if one can compute $c(x')$ for most x'. Relates average-case complexity to worst-case. [Lipton, STV]

• Alternate interpretation: Compute $c(x)$ without revealing x. Leads to Instance Hiding [BF], Private Information Retrieval [CGKS].
Motivation for Local-testing

- No generic applications known.
- However,
 - Interesting phenomenon on its own.
 - Intangible connection to Probabilistically Checkable Proofs (PCPs).
 - Potentially good approach to understanding limitations of PCPs (though all resulting work has led to improvements).
Contrast between decoding and testing

- **Decoding**: Property of words near codewords.
- **Testing**: Property of words far from code.

Decoding:
- Motivations happy with \(n = \text{quasi-poly}(k) \), and \(q = \text{poly log } n \).
- Lower bounds show \(q = \text{O}(1) \) and \(n = \text{nearly-linear}(k) \) impossible.

Testing: Better tradeoffs possible! Likely more useful in practice.
- Even conceivable: \(n = \text{O}(k) \) with \(q = \text{O}(1) \)?
Some LDCs and LTCs
Hadamard (1st Order RM) Codes

Message:

(Coefficients of) Linear Functions L from \mathbb{F}_2^k to \mathbb{F}_2.

Encoding:

evaluations of L on all of \mathbb{F}_2^k.

Parameters:

k bit messages $\rightarrow 2^k$-bit codewords

Locality:

$L(x) = L(x + y) - L(y)$

2-Locally Decodable [Folklore/Exercise]
3-Locally Testable [BlumLubyRubinfeld]
Hadamard (1st Order RM) Codes

- Conclusions:
 - There exist infinite families of codes
 - With constant locality (for testing and correcting).
Codes via Multivariate Polynomials

Message: coefficients of deg t, m-variate polynomial P
over finite field \mathbb{F}

Encoding: evaluations of P on all of \mathbb{F}^m.

Parameters: $k \approx (t/m)^m$, $n = |\mathbb{F}|^m$, $\delta \geq t/|\mathbb{F}|$.
(Reed Muller code)
Basic insight to locality

- m-variate polynomial of degree t restricted to $m' < m$-dim. (affine) subspace is polynomial of degree t.

- **Local Decoding:**
 Pick subspace through point x of interest, and decode on subspace.

 Query complexity $q = |\mathbb{F}|^{m'}$; Time = poly(q).
 $m' \ll m \Rightarrow$ sublinear!

- **Local Testing:**
 Verify f restricted to space is of degree t.
 Same complexity.
Polynomial Codes

- Many parameters: m, t, \mathbb{F}
- Many tradeoffs possible:
 - Locality q with $n = \exp(k^{1/(q-1)})$
 - Locality $(\log k)^2$ with $n = k^4$
 - Locality \sqrt{k} with $n = O(k)$.
Are Polynomial Codes (Roughly) Best?

- No! [Ambainis97] [GoldreichS.00] ...

- No!! [Beimel, Ishai, Kushilevitz, Raymond]

- Really ... Seriously ... No!!!!

[Yekhanin07, Raghavendra08, Efremenko09]
Recent LDCs
[Yekhanin ‘07, Raghavendra ‘08, Efremenko ‘09]
The recent result:

- Fix $q = 3$; $n =$??? (as function of k).

- Till 2007: $n \approx \exp(k^{1/5})$ (non-binary).

- $n \approx \exp(\sqrt{k})$ (binary).

- [Yekhanin ’07]:

 $n \approx \exp(k^{0.0000001})$ (binary).

- [Raghavendra ‘08]:

- [Efremenko ‘09]:

 $n \approx \exp(\exp(\sqrt{\log k}))$ (binary).
Essence of the idea:

- Build “good” combinatorial matrix over \mathbb{Z}_m
- Embed \mathbb{Z}_m in multiplicative subgroup of \mathbb{F}
- Get locally decodable code over \mathbb{F}
"Good" Combinatorial matrix

\[A = \begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix} \]

An arbitrary \(k \times n \) matrix over \(\mathbb{Z}_m \)

- Zeroes on diagonal
- Non-zero off-diagonal
- Columns closed under addition
Embedding into field

- Let $A = [a_{ij}]$ be “good“ over \mathbb{Z}_m
- Let ω = primitive mth root of unity in \mathbb{F}.
- Let $G = [\omega^{a_{ij}}]$.

Theorem [Yekhanin, Raghavendra, Efremenko]:
G generates m query LDC over \mathbb{F}.

Highly non-intuitive!
Improvements

- \(A = [a_{ij}]; \ G = [\omega^{a_{ij}}]. \)

- Off-diagonal entries of \(A \) from \(S \)
 \[\Rightarrow G \text{ generates } |S| + 1\text{-query LDC.} \]
 (Suffices for [Efremenko])

- \(\omega^{S} \) zeroes of \(t \)-sparse polynomial over \(\mathbb{F} \)
 \[\Rightarrow G \text{ generates } t\text{-query LDC.} \]
 (Critical to [Yekhanin])
“Good” Matrices?

- [Yekhanin]:
 - Picked m prime.
 - Hand-constructed matrix.
 - Achieved $n = \exp\left(k^{1/|S|}\right)$
 - Optimal if m prime!
 - Managed to make S large with $t=3$.

- [Efremenko]
 - m composite!
 - Achieves $|S| = 3$ and $n = \exp(\exp(\sqrt{\log k}))$
 ([Beigel,Barrington,Rudich];[Grolmusz])
 - Optimal?
Limits to Local Decodability: Katz-Trevisan

- q queries \(\Rightarrow n = k^{1+\Omega(1/q)} \).
- Technique:
 - Recall \(D(x) \) computes \(C(x) \) whp for all \(x \).
 - Can assume (with some modifications) that query pattern uniform for any fixed \(x \).
 - Can find many random strings such that their query sets are disjoint.
 - In such case, random subset of \(n^{1-1/q} \) coordinates of codeword contain at least one query set, for most \(x \).
 - Yields desired bound.

\[n = k^{1+\Omega(1/q)}. \]
Some general results

- Sparse, High-Distance Codes:
 - Are Locally Decodable and Testable
 - [KaufmanLitsyn, KaufmanS]

- 2-transitive codes of small dual-distance:
 - Are Locally Decodable
 - [Alon,Kaufman,Krivelevich,Litsyn,Ron]

- Linear-invariant codes of small dual-distance:
 - Are also Locally Testable
 - [KaufmanS]
Summary

- Local algorithms in error-detection/correction lead to interesting new questions.

- Non-trivial progress so far.

- Limits largely unknown
 - $O(1)$-query LDCs must have $\text{Rate}(C) = 0$
 - [Katz-Trevisan]
Questions

- Can LTC replace RS (on your hard disks)?
 - Is a significant rate-loss necessary?
 - Lower bounds?
 - Better error models?

- Simple/General near optimal constructions?
- Other applications to mathematics/computation? (PCPs necessary/sufficient)?
- Lower bounds for LDCs?/Better constructions?
Thank You!