List Decoding of Reed Solomon Codes

Madhu Sudan

MIT CSAIL

Background: Reliable Transmission of Information

The Problem of Information Transmission

The Problem of Information Transmission

The Problem of Information Transmission

- When information is digital, reliability is critical.
- Need to understand <u>errors</u>, and correct them.

Shannon (1948)

- Model noise by probability distribution.
- Example: Binary symmetric channel (BSC)
 - Parameter $p \in [0, \frac{1}{2}]$.
 - Channel transmits bits.
 - With probability 1 p bit transmitted faithfully, and with probability p bit flipped (independent of all other events).

Shannon's architecture

- Sender encodes k bits into n bits.
- Transmits *n* bit string on channel.
- Receiver decodes n bits into k bits.
- Rate of channel usage = k/n.

Shannon's theorem

- Every channel (in broad class) has a capacity s.t., transmitting at Rate below capacity is feasible and above capacity is infeasible.
- Example: Binary symmetric channel (p) has capacity 1 H(p), where H(p) is the binary entropy function.

 $\circ p = 0$ implies capacity = 1.

$$\circ p = \frac{1}{2}$$
 implies capacity $= 0$.

- $\circ p < \frac{1}{2}$ implies capacity > 0.
- Example: *q*-ary symmetric channel (p): On input $\sigma \in \mathbb{F}_q$ receiver receives (independently) σ' , where

$$\circ \ \sigma' = \sigma$$
 w.p. $1-p$.

• σ' uniform over $\mathbb{F}_q - \{\sigma\}$ w.p. p. Capacity positive if p < 1 - 1/q.

Constructive versions

- Shannon's theory was non-constructive. Decoding takes exponential time.
- [Elias '55] gave polytime algorithms to achieve positive rate on every channel of positive capacity.
- [Forney '66] achieved any rate < capacity with polynomial time algorithms (and exponentially small error).
- Modern results (following [Spielman '96]) lead to linear time algorithms.

Hamming (1950)

- Modelled errors adversarially.
- Focussed on image of encoding function (the "Code").
- Introduced metric (Hamming distance) on range of encoding function. d(x, y) = # coordinates such that $x_i \neq y_i$.
- Noticed that for adversarial error (and guaranteed error recovery), <u>distance</u> of Code is important.

$$\Delta(C) = \min_{x,y \in C} \{ d(x,y) \}.$$

• Code of distance d corrects (d-1)/2 errors.

[Sha48] : C probabilistic.

- E.g., flips each bit independently w.p. *p*.
- ✓ Tightly analyzed for many cases e.g., q-SC(p).
- X Channel may be too weak to capture some scenarios.
- ✗ Need very accurate channel model.

[Sha48] : C probabilistic.

Corrects many errors. X Channel restricted.

[Sha48] : C probabilistic. Corrects many errors. X Channel restricted.

[Ham50] : C flips bits adversarially

- ✓ Safer model, "good" codes known
- ✗ Too pessimistic: Can only decode if p < 1/2 for any alphabet. ▮

[Sha48] : C probabilistic. ✓ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits *adversarially* X Fewer errors. ✓ More general errors.

- [Sha48] : C probabilistic.
 Corrects many errors. X Channel restricted.
- [Ham50] : C flips bits *adversarially* ★ Fewer errors. ✔ More general errors.
 - Which model is correct? Depends on application.
 Crudely: Small *q* ⇒ Shannon. Large *q* ⇒ Hamming.
 - Today: New Models of error-correction + algorithms.
 List-decoding: Relaxed notion of decoding.

- [Sha48] : C probabilistic.
 Corrects many errors. X Channel restricted.
- [Ham50] : C flips bits *adversarially* ★ Fewer errors. ✔ More general errors.
 - Which model is correct? Depends on application.
 Crudely: Small *q* ⇒ Shannon. Large *q* ⇒ Hamming.
 - Today: New Models of error-correction + algorithms.
 List-decoding: Relaxed notion of decoding.
 More errors ✓ Strong (enough) errors.

Reed-Solomon Codes

• Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?

- Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?
- Bound: $\Delta(C) \leq n k + 1$.

- Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?
- Bound: $\Delta(C) \leq n k + 1$.
- Proof:
 - Project code to first k 1 coordinates.
 - By Pigeonhole Principle, two codewords collide.
 - These two codewords thus disagree in at most n k + 1 coordinates.

- Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?
- Bound: $\Delta(C) \leq n k + 1$.
- Proof:
 - Project code to first k 1 coordinates.
 - By Pigeonhole Principle, two codewords collide.
 - These two codewords thus disagree in at most n k + 1 coordinates.
- Surely we can do better?

- Suppose $C \subseteq \mathbb{F}_q^n$ has q^k codewords. How large can its distance be?
- Bound: $\Delta(C) \leq n k + 1$.
- Proof:
 - Project code to first k 1 coordinates.
 - By Pigeonhole Principle, two codewords collide.
 - These two codewords thus disagree in at most n k + 1 coordinates.
- Surely we can do better?
- Actually No! [Reed-Solomon] Codes match this bound!

Reed-Solomon Codes

• Messages \equiv Polynomial.

- •Encoding \equiv Evaluation at x_1, \ldots, x_n .
- •n > Degree: Injective
- • $n \gg$ Degree: Redundant

Reed-Solomon Codes (formally)

- Let \mathbb{F}_q be a finite field.
- Code specified by $k, n, \alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$.
- Message: $\langle c_0, \dots, c_k \rangle \in \mathbb{F}_q^{k+1}$ coefficients of degree kpolynomial $p(x) = c_0 + c_1 x + \cdots + c_k x^k$.
- Encoding: $p \mapsto \langle p(\alpha_1), \ldots, p(\alpha_n) \rangle$. (k + 1 letters to n letters.)
- Degree k poly has at most k roots \Leftrightarrow Distance d = n k.
- These are the Reed-Solomon codes. Match [Singleton] bound! Commonly used (CDs, DVDs etc.).

List-Decoding of Reed-Solomon Codes

Reed-Solomon Decoding

Restatement of the problem:

- Input: *n* points $(\alpha_i, y_i) \in \mathbb{F}_q^2$; agreement parameter *t*
- Output: All degree k polynomials p(x) s.t. $p(\alpha_i) = y_i$ for at least t values of i.

We use k = 1 for illustration.

- i.e. want *all* "lines" (y - ax - b = 0) that pass through $\geq t$ out of *n* points.

n = 14 points; Want all *lines* through at least 5 points.

n = 14 points; Want all *lines* through at least 5 points.

Find deg. 4 poly. $Q(x, y) \neq 0$ s.t. $Q(\alpha_i, y_i) = 0$ for all points.

n = 14 points; Want all *lines* through at least 5 points.

0		0		0
0	0		0	
		0		0
0	0		0	
0		0		0

Find deg. 4 poly. $Q(x, y) \not\equiv 0$ s.t. $Q(\alpha_i, y_i) = 0$ for all points. $Q(x, y) = y^4 - x^4 - y^2 + x^2$ Let us plot all zeroes of Q ...

n = 14 points; Want all *lines* through at least 5 points.

Find deg. 4 poly. $Q(x, y) \not\equiv 0$ s.t. $Q(\alpha_i, y_i) = 0$ for all points. $Q(x, y) = y^4 - x^4 - y^2 + x^2$ Let us plot all zeroes of Q ... Both relevant lines emerge !

n = 14 points; Want all *lines* through at least 5 points.

Find deg. 4 poly. $Q(x, y) \neq 0$ s.t. $Q(\alpha_i, y_i) = 0$ for all points. $Q(x, y) = y^4 - x^4 - y^2 + x^2$ Let us plot all zeroes of Q ... Both relevant lines emerge ! Formally, Q(x, y) factors as: $(x^2 + y^2 - 1)(y + x)(y - x)$.

What Happened?

- 1. Why did degree 4 curve exist?
 - Counting argument: degree 4 gives enough degrees of freedom to pass through any 14 points.
- 2. Why did all the relevant lines emerge/factor out?
 - Line ℓ intersects a deg. 4 curve Q in 5 points $\Longrightarrow \ell$ is a factor of Q

Generally

- **Lemma 1:** $\exists Q$ with $\deg_x(Q), \deg_y(Q) \le D = \sqrt{n}$ passing thru any n points.
- Lemma 2: If Q with $\deg_x(Q)$, $\deg_y(Q) \le D$ intersects y p(x) with $\deg(p) \le d$ intersect in more that (D+1)d points, then y p(x) divides Q.

Efficient algorithm?

1. Can find Q by solving system of linear equations

Efficient algorithm?

- 1. Can find Q by solving system of linear equations
- 2. Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]

Efficient algorithm?

- 1. Can find Q by solving system of linear equations
- 2. Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:
- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem:</u> Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem:</u> Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

• With some fine-tuning of parameters:

- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem</u>: Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

• With some fine-tuning of parameters: <u>Theorem:</u> [S. '96] Can list-decode Reed-Solomon code from $1 - \sqrt{2R}$ -fraction errors.

- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem</u>: Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

- With some fine-tuning of parameters: <u>Theorem:</u> [S. '96] Can list-decode Reed-Solomon code from $1 - \sqrt{2R}$ -fraction errors.
- Does not meet combinatorial bounds though!

- 1. Can find Q by solving system of linear equations
- Fast algorithms for factorization of bivariate polynomials exist ('83-'85) [Kaltofen, Chistov & Grigoriev, Lenstra, von zur Gathen & Kaltofen]
 - Immediate application:

<u>Theorem</u>: Can list-decode Reed-Solomon code from $n - (k+1)\sqrt{n}$ errors.

- With some fine-tuning of parameters: <u>Theorem:</u> [S. '96] Can list-decode Reed-Solomon code from $1 - \sqrt{2R}$ -fraction errors.
- Does not meet combinatorial bounds though!

Improved List-Decoding

n = 11 points; Want <u>all</u> lines through ≥ 4 pts.

n = 11 points; Want <u>all</u> lines through ≥ 4 pts.

Fitting degree 4 curve *Q* as earlier doesn't work.

n = 11 points; Want <u>all</u> lines through ≥ 4 pts.

Fitting degree 4 curve Q as earlier doesn't work.

Why?

n = 11 points; Want <u>all</u> lines through ≥ 4 pts.

Fitting degree 4 curve Q as earlier doesn't work.

Why?

Correct answer has 5 lines. Degree 4 curve can't have 5 factors!

n = 11 points; Want <u>all</u> lines through ≥ 4 pts. Fit degree 7 poly. Q(x, y)passing through each point <u>twice</u>. $Q(x, y) = \cdots$ (margin too small) Plot all zeroes ...

n = 11 points; Want <u>all</u> lines through ≥ 4 pts. Fit degree 7 poly. Q(x, y)passing through each point <u>twice</u>. $Q(x, y) = \cdots$ (margin too small) Plot all zeroes ... All relevant lines emerge!

n = 11 points; Want <u>all</u> lines through ≥ 4 pts. Fit degree 7 poly. Q(x, y)passing through each point <u>twice</u>. $Q(x, y) = \cdots$ (margin too small) Plot all zeroes ... All relevant lines emerge!

Where was the gain?

- Requiring *Q* to pass through each point twice, effectively doubles the *#* intersections between *Q* and line.
 - So # intersections is now 8.
- On the other hand # constraints goes up from 11 to 33. Forces degree used to go upto 7 (from 4).
- But now # intersections is less than degree!

Can pass through each point twice with less than twice the degree!

• Letting intersection multiplicity go to ∞ gives decoding algorithm for upto $1 - \sqrt{R}$ errors.

• Can correct errors in Reed-Solomon codes well beyond "half the distance" (Hamming) barrier!

- Can correct errors in Reed-Solomon codes well beyond "half the distance" (Hamming) barrier!
- Matches best known "combinatorial" bounds on list-decodability.

- Can correct errors in Reed-Solomon codes well beyond "half the distance" (Hamming) barrier!
- Matches best known "combinatorial" bounds on list-decodability.
- Open Question: Correct more errors, or show this leads to exponentially large lists!

- Can correct errors in Reed-Solomon codes well beyond "half the distance" (Hamming) barrier!
- Matches best known "combinatorial" bounds on list-decodability.
- Open Question: Correct more errors, or show this leads to exponentially large lists!
- Techniques: The polynomial method, and the method of multiplicities!

The Polynomial Method

• Goal: Understand some "combinatorial parameters" of some algebraically nice set. E.g.,

The Polynomial Method

- Goal: Understand some "combinatorial parameters" of some algebraically nice set. E.g.,
 - Minimum number of points in the union of ℓ sets where each set is *t* points from a degree *k* polynomial = ?
 - Minimum number of points in $K \subseteq \mathbb{F}_q^n$ such that K contains a line in every direction.

The Polynomial Method

- Goal: Understand some "combinatorial parameters" of some algebraically nice set. E.g.,
- Method:
 - Fit low-degree polynomial Q to the set K.
 - Infer Q is zero on points outside K, due to algebraic niceness.
 - Infer lower bound on degree of Q (due to abundance of zeroes).
 - Transfer to bound on combinatorial parameter of interest.

- Definition: $K \subseteq \mathbb{F}_q^n$ is a Kakeya set if it contains a line in every direction.
- Question: How small can *K* be?

- Definition: $K \subseteq \mathbb{F}_q^n$ is a Kakeya set if it contains a line in every direction.
- Question: How small can *K* be?
- Bounds (till 2007): $\forall K, |K| \ge q^{n/2}$ $\exists K, |K| \le q^n$

- Definition: $K \subseteq \mathbb{F}_q^n$ is a Kakeya set if it contains a line in every direction.
- Question: How small can *K* be?
- Bounds (till 2007): $\forall K, |K| \ge q^{n/2}$ $\exists K, |K| \le \approx (q/2)^n$ [Mockenhaupt & Tao]

- Definition: $K \subseteq \mathbb{F}_q^n$ is a Kakeya set if it contains a line in every direction.
- Question: How small can *K* be?
- Bounds (till 2007): $\forall K, |K| \ge q^{n/2}$ $\exists K, |K| \le \approx (q/2)^n$ [Mockenhaupt & Tao]
- In particular, even exponent of q unknown!

- Definition: $K \subseteq \mathbb{F}_q^n$ is a Kakeya set if it contains a line in every direction.
- Question: How small can *K* be?
- Bounds (till 2007): $\forall K, |K| \ge q^{n/2}$ $\exists K, |K| \le \approx (q/2)^n$ [Mockenhaupt & Tao]
- In particular, even exponent of q unknown!
- [Dvir'08]'s breakthrough: $\forall K$, $|K| \ge q^n/n!$

- Definition: $K \subseteq \mathbb{F}_q^n$ is a Kakeya set if it contains a line in every direction.
- Question: How small can *K* be?
- Bounds (till 2007): $\forall K, |K| \ge q^{n/2}$ $\exists K, |K| \le \approx (q/2)^n$ [Mockenhaupt & Tao]
- In particular, even exponent of q unknown!
- [Dvir'08]'s breakthrough: $\forall K$, $|K| \ge q^n/n!$
- Subsequently [Dvir, Kopparty, Saraf, S.] $\forall K, |K| \ge (q/2)^n$

- [Dvir'08]'s analysis:
 - Fit low-degree polynomial Q to K. (Interpolation \Rightarrow Degree not too high if K not large.)

- [Dvir'08]'s analysis:
 - Fit low-degree polynomial Q to K. (Interpolation \Rightarrow Degree not too high if K not large.)
 - Show homogenous part of Q zero at y if line in direction y contained in K.

- [Dvir'08]'s analysis:
 - Fit low-degree polynomial Q to K. (Interpolation \Rightarrow Degree not too high if K not large.)
 - Show homogenous part of Q zero at y if line in direction y contained in K.
 - Conclude homogenous part is zero too often!

- [Dvir'08]'s analysis:
 - Fit low-degree polynomial Q to K. (Interpolation \Rightarrow Degree not too high if K not large.)
 - Show homogenous part of Q zero at y if line in direction y contained in K.
 - Conclude homogenous part is zero too often!
- [Saraf + S.], [Dvir + Kopparty + Saraf + S.]:
 - Fit Q to vanish many times at each point of K.
 - Yields better bounds!

• Importance of model of error.

- Importance of model of error.
- Virtues of relaxing some notions (e.g., list-decoding vs. unique-decoding)

- Importance of model of error.
- Virtues of relaxing some notions (e.g., list-decoding vs. unique-decoding)
- New algorithmic insights: Can be useful outside the context of list-decoding (e.g., [Koetter-Vardy] Soft-decision decoder).

- Importance of model of error.
- Virtues of relaxing some notions (e.g., list-decoding vs. unique-decoding)
- New algorithmic insights: Can be useful outside the context of list-decoding (e.g., [Koetter-Vardy] Soft-decision decoder).
- Central open question:

- Importance of model of error.
- Virtues of relaxing some notions (e.g., list-decoding vs. unique-decoding)
- New algorithmic insights: Can be useful outside the context of list-decoding (e.g., [Koetter-Vardy] Soft-decision decoder).
- Central open question:

Constructive list-decodable *binary* codes of rate $1 - H(\rho)$ correcting ρ -fraction errors !! Corresponding question for large alphabets resolved by [ParvareshVardy05, GuruswamiRudra06].
Conclusions

- Importance of model of error.
- Virtues of relaxing some notions (e.g., list-decoding vs. unique-decoding)
- New algorithmic insights: Can be useful outside the context of list-decoding (e.g., [Koetter-Vardy] Soft-decision decoder).
- Central open question:

Constructive list-decodable *binary* codes of rate $1 - H(\rho)$ correcting ρ -fraction errors !! Corresponding question for large alphabets resolved by [ParvareshVardy05, GuruswamiRudra06].

• New (?) mathematical insights.

Conclusions

- Importance of model of error.
- Virtues of relaxing some notions (e.g., list-decoding vs. unique-decoding)
- New algorithmic insights: Can be useful outside the context of list-decoding (e.g., [Koetter-Vardy] Soft-decision decoder).
- Central open question:

Constructive list-decodable *binary* codes of rate $1 - H(\rho)$ correcting ρ -fraction errors !! Corresponding question for large alphabets resolved by [ParvareshVardy05, GuruswamiRudra06].

- New (?) mathematical insights.
- Challenge: Apply existing insights to other practical settings.

Thank You !!