
List Decoding of Reed Solomon Codes

Madhu Sudan

MIT CSAIL

List Decoding of Reed Solomon Codes – p. 1/30

Background: Reliable Transmission of
Information

List Decoding of Reed Solomon Codes – p. 2/30

The Problem of Information Transmission

Noisy

Channel
Sender Receiver

List Decoding of Reed Solomon Codes – p. 3/30

The Problem of Information Transmission

We are not

ready

Noisy

Channel
Sender Receiver

List Decoding of Reed Solomon Codes – p. 4/30

The Problem of Information Transmission

We are now

ready

We are not

ready

Noisy

Channel
Sender Receiver

• When information is digital, reliability is critical.

• Need to understand errors, and correct them.

List Decoding of Reed Solomon Codes – p. 5/30

Shannon (1948)

• Model noise by probability distribution.
• Example: Binary symmetric channel (BSC)

◦ Parameter p ∈ [0, 1

2
].

◦ Channel transmits bits.
◦ With probability 1 − p bit transmitted faithfully, and with

probability p bit flipped (independent of all other events).

Shannon’s architecture

• Sender encodes k bits into n bits.
• Transmits n bit string on channel.
• Receiver decodes n bits into k bits.
• Rate of channel usage = k/n.

List Decoding of Reed Solomon Codes – p. 6/30

Shannon’s theorem

• Every channel (in broad class) has a capacity s.t.,
transmitting at Rate below capacity is feasible and above
capacity is infeasible.

• Example: Binary symmetric channel (p) has capacity
1 − H(p), where H(p) is the binary entropy function.
◦ p = 0 implies capacity = 1.
◦ p = 1

2
implies capacity = 0.

◦ p < 1

2
implies capacity > 0.

• Example: q-ary symmetric channel (p): On input σ ∈ Fq

receiver receives (independently) σ′, where
◦ σ′ = σ w.p. 1 − p.
◦ σ′ uniform over Fq − {σ} w.p. p.

Capacity positive if p < 1 − 1/q.

List Decoding of Reed Solomon Codes – p. 7/30

Constructive versions

• Shannon’s theory was non-constructive. Decoding takes
exponential time.

• [Elias ’55] gave polytime algorithms to achieve positive rate
on every channel of positive capacity.

• [Forney ’66] achieved any rate < capacity with polynomial
time algorithms (and exponentially small error).

• Modern results (following [Spielman ’96]) lead to linear time
algorithms.

List Decoding of Reed Solomon Codes – p. 8/30

Hamming (1950)

• Modelled errors adversarially.
• Focussed on image of encoding function (the “Code”).
• Introduced metric (Hamming distance) on range of

encoding function. d(x, y) = # coordinates such that xi 6= yi.
• Noticed that for adversarial error (and guaranteed error

recovery), distance of Code is important.

∆(C) = min
x,y∈C

{d(x, y)}.

• Code of distance d corrects (d − 1)/2 errors.

List Decoding of Reed Solomon Codes – p. 9/30

Contrast between Shannon & Hamming

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
E.g., flips each bit independently w.p. p.

✔ Tightly analyzed for many cases e.g., q-SC(p).
✗ Channel may be too weak to capture some scenarios.
✗ Need very accurate channel model.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially

✔ Safer model, “good” codes known
✗ Too pessimistic: Can only decode if p < 1/2 for any

alphabet.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

• Which model is correct? Depends on application.
◦ Crudely: Small q ⇒ Shannon. Large q ⇒ Hamming.

• Today: New Models of error-correction + algorithms.
◦ List-decoding: Relaxed notion of decoding.

List Decoding of Reed Solomon Codes – p. 10/30

Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

• Which model is correct? Depends on application.
◦ Crudely: Small q ⇒ Shannon. Large q ⇒ Hamming.

• Today: New Models of error-correction + algorithms.
◦ List-decoding: Relaxed notion of decoding.

✔ More errors ✔ Strong (enough) errors.

List Decoding of Reed Solomon Codes – p. 10/30

Reed-Solomon Codes

List Decoding of Reed Solomon Codes – p. 11/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?

List Decoding of Reed Solomon Codes – p. 12/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.

List Decoding of Reed Solomon Codes – p. 12/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.

List Decoding of Reed Solomon Codes – p. 12/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.
• Surely we can do better?

List Decoding of Reed Solomon Codes – p. 12/30

Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.
• Surely we can do better?
• Actually - No! [Reed-Solomon] Codes match this bound!

List Decoding of Reed Solomon Codes – p. 12/30

Reed-Solomon Codes

m1

m2

m3

m4

x1 x2 x3 x4 x5 x6 x7 x8 x9

•Messages ≡ Polynomial.

•Encoding ≡ Evaluation
at x1, . . . , xn.

•n > Degree: Injective

•n ≫ Degree: Redundant

List Decoding of Reed Solomon Codes – p. 13/30

Reed-Solomon Codes (formally)

• Let Fq be a finite field.

• Code specified by k, n, α1, . . . , αn ∈ Fq.

• Message: 〈c0, . . . , ck〉 ∈ F
k+1
q coefficients of degree k

polynomial p(x) = c0 + c1x + · · · ckx
k.

• Encoding: p 7→ 〈p(α1), . . . , p(αn)〉. (k + 1 letters to n letters.)
• Degree k poly has at most k roots ⇔ Distance d = n − k.
• These are the Reed-Solomon codes.

Match [Singleton] bound!
Commonly used (CDs, DVDs etc.).

List Decoding of Reed Solomon Codes – p. 14/30

List-Decoding of Reed-Solomon Codes

List Decoding of Reed Solomon Codes – p. 15/30

Reed-Solomon Decoding

Restatement of the problem:

Input: n points (αi, yi) ∈ F
2
q ; agreement parameter t

Output: All degree k polynomials p(x) s.t. p(αi) = yi for at
least t values of i.

We use k = 1 for illustration.

i.e. want all “lines” (y − ax − b = 0) that pass through
≥ t out of n points.

List Decoding of Reed Solomon Codes – p. 16/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

List Decoding of Reed Solomon Codes – p. 17/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

List Decoding of Reed Solomon Codes – p. 17/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...

List Decoding of Reed Solomon Codes – p. 17/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...

Both relevant lines emerge !

List Decoding of Reed Solomon Codes – p. 17/30

Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...

Both relevant lines emerge !

Formally, Q(x, y) factors as:
(x2 + y2 − 1)(y + x)(y − x).

List Decoding of Reed Solomon Codes – p. 17/30

What Happened?

1. Why did degree 4 curve exist?
◦ Counting argument: degree 4 gives enough degrees of

freedom to pass through any 14 points.

2. Why did all the relevant lines emerge/factor out?
◦ Line ℓ intersects a deg. 4 curve Q in 5 points =⇒ ℓ is a

factor of Q

List Decoding of Reed Solomon Codes – p. 18/30

Generally

Lemma 1: ∃Q with degx(Q),degy(Q) ≤ D =
√

n passing thru any
n points.

Lemma 2: If Q with degx(Q),degy(Q) ≤ D intersects y − p(x) with
deg(p) ≤ d intersect in more that (D + 1)d points, then
y − p(x) divides Q.

List Decoding of Reed Solomon Codes – p. 19/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:
Theorem: [S. ’96] Can list-decode Reed-Solomon
code from 1 −

√
2R-fraction errors.

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:
Theorem: [S. ’96] Can list-decode Reed-Solomon
code from 1 −

√
2R-fraction errors.

• Does not meet combinatorial bounds though!

List Decoding of Reed Solomon Codes – p. 20/30

Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:
Theorem: [S. ’96] Can list-decode Reed-Solomon
code from 1 −

√
2R-fraction errors.

• Does not meet combinatorial bounds though!

List Decoding of Reed Solomon Codes – p. 20/30

Improved List-Decoding

List Decoding of Reed Solomon Codes – p. 21/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

List Decoding of Reed Solomon Codes – p. 22/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

List Decoding of Reed Solomon Codes – p. 22/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

Why?

List Decoding of Reed Solomon Codes – p. 22/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

Why?

Correct answer has 5 lines.
Degree 4 curve can’t have

5 factors!

List Decoding of Reed Solomon Codes – p. 22/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)
passing through each
point twice.

Q(x, y) = · · ·
(margin too small)
Plot all zeroes ...

List Decoding of Reed Solomon Codes – p. 23/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)
passing through each
point twice.

Q(x, y) = · · ·
(margin too small)
Plot all zeroes ...

All relevant lines emerge!

List Decoding of Reed Solomon Codes – p. 23/30

Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)
passing through each
point twice.

Q(x, y) = · · ·
(margin too small)
Plot all zeroes ...

All relevant lines emerge!

List Decoding of Reed Solomon Codes – p. 23/30

Where was the gain?

• Requiring Q to pass through each point twice, effectively
doubles the # intersections between Q and line.
◦ So # intersections is now 8.

• On the other hand # constraints goes up from 11 to 33.
Forces degree used to go upto 7 (from 4).

• But now # intersections is less than degree!

Can pass through each point twice with less than twice the
degree!

• Letting intersection multiplicity go to ∞ gives decoding
algorithm for upto 1 −

√
R errors.

List Decoding of Reed Solomon Codes – p. 24/30

Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

List Decoding of Reed Solomon Codes – p. 25/30

Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

• Matches best known “combinatorial” bounds on
list-decodability.

List Decoding of Reed Solomon Codes – p. 25/30

Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

• Matches best known “combinatorial” bounds on
list-decodability.

• Open Question: Correct more errors, or show this leads to
exponentially large lists!

List Decoding of Reed Solomon Codes – p. 25/30

Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

• Matches best known “combinatorial” bounds on
list-decodability.

• Open Question: Correct more errors, or show this leads to
exponentially large lists!

• Techniques: The polynomial method, and the method of
multiplicities!

List Decoding of Reed Solomon Codes – p. 25/30

The Polynomial Method

• Goal: Understand some “combinatorial parameters” of
some algebraically nice set. E.g.,

List Decoding of Reed Solomon Codes – p. 26/30

The Polynomial Method

• Goal: Understand some “combinatorial parameters” of
some algebraically nice set. E.g.,

Minimum number of points in the union of ℓ sets where
each set is t points from a degree k polynomial = ?

Minimum number of points in K ⊆ F
n
q such that K

contains a line in every direction.

List Decoding of Reed Solomon Codes – p. 26/30

The Polynomial Method

• Goal: Understand some “combinatorial parameters” of
some algebraically nice set. E.g.,

• Method:

Fit low-degree polynomial Q to the set K.

Infer Q is zero on points outside K, due to algebraic
niceness.

Infer lower bound on degree of Q (due to abundance of
zeroes).

Transfer to bound on combinatorial parameter of
interest.

List Decoding of Reed Solomon Codes – p. 26/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤ qn

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤≈ (q/2)n [Mockenhaupt & Tao]

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤≈ (q/2)n [Mockenhaupt & Tao]
• In particular, even exponent of q unknown!

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤≈ (q/2)n [Mockenhaupt & Tao]
• In particular, even exponent of q unknown!
• [Dvir’08]’s breakthrough: ∀K, |K| ≥ qn/n!

List Decoding of Reed Solomon Codes – p. 27/30

Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤≈ (q/2)n [Mockenhaupt & Tao]
• In particular, even exponent of q unknown!
• [Dvir’08]’s breakthrough: ∀K, |K| ≥ qn/n!

• Subsequently [Dvir, Kopparty, Saraf, S.]
∀K, |K| ≥ (q/2)n

List Decoding of Reed Solomon Codes – p. 27/30

Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

List Decoding of Reed Solomon Codes – p. 28/30

Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

Show homogenous part of Q zero at y if line in direction
y contained in K.

List Decoding of Reed Solomon Codes – p. 28/30

Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

Show homogenous part of Q zero at y if line in direction
y contained in K.

Conclude homogenous part is zero too often!

List Decoding of Reed Solomon Codes – p. 28/30

Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

Show homogenous part of Q zero at y if line in direction
y contained in K.

Conclude homogenous part is zero too often!
• [Saraf + S.], [Dvir + Kopparty + Saraf + S.]:

Fit Q to vanish many times at each point of K.

Yields better bounds!

List Decoding of Reed Solomon Codes – p. 28/30

Conclusions

• Importance of model of error.

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

• Central open question:

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

• Central open question:
Constructive list-decodable binary codes of rate
1 − H(ρ) correcting ρ-fraction errors !!
Corresponding question for large alphabets resolved
by [ParvareshVardy05, GuruswamiRudra06].

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

• Central open question:
Constructive list-decodable binary codes of rate
1 − H(ρ) correcting ρ-fraction errors !!
Corresponding question for large alphabets resolved
by [ParvareshVardy05, GuruswamiRudra06].

• New (?) mathematical insights.

List Decoding of Reed Solomon Codes – p. 29/30

Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

• Central open question:
Constructive list-decodable binary codes of rate
1 − H(ρ) correcting ρ-fraction errors !!
Corresponding question for large alphabets resolved
by [ParvareshVardy05, GuruswamiRudra06].

• New (?) mathematical insights.
• Challenge: Apply existing insights to other practical settings.

List Decoding of Reed Solomon Codes – p. 29/30

Thank You !!

List Decoding of Reed Solomon Codes – p. 30/30

	~
	The Problem of Information Transmission
	The Problem of Information Transmission
	The Problem of Information Transmission
	Shannon (1948)
	Shannon's theorem
	Constructive versions
	Hamming (1950)
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming
	Contrast between Shannon & Hamming

	~
	Motivation: {�rown {[Singleton]}} Bound
	Motivation: {�rown {[Singleton]}} Bound
	Motivation: {�rown {[Singleton]}} Bound
	Motivation: {�rown {[Singleton]}} Bound
	Motivation: {�rown {[Singleton]}} Bound

	Reed-Solomon Codes
	Reed-Solomon Codes (formally)
	~
	Reed-Solomon Decoding
	Algorithm Description mcite {S. '96}
	Algorithm Description mcite {S. '96}
	Algorithm Description mcite {S. '96}
	Algorithm Description mcite {S. '96}
	Algorithm Description mcite {S. '96}

	What Happened?
	Generally
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?
	Efficient algorithm?

	~
	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}

	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}
	Going Further: Example 2 mcite {Guruswami+S. '98}

	Where was the gain?
	Summary
	Summary
	Summary
	Summary

	The Polynomial Method
	The Polynomial Method
	The Polynomial Method

	Kakeya Sets
	Kakeya Sets
	Kakeya Sets
	Kakeya Sets
	Kakeya Sets
	Kakeya Sets

	Polynomial Method and Kakeya Sets
	Polynomial Method and Kakeya Sets
	Polynomial Method and Kakeya Sets
	Polynomial Method and Kakeya Sets

	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions

	$,$

