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Background: Reliable Transmission of
Information
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The Problem of Information Transmission
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Channel
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The Problem of Information Transmission

We are now 

ready

We are not 

ready

Noisy

Channel
Sender Receiver

• When information is digital, reliability is critical.

• Need to understand errors, and correct them.
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Shannon (1948)

• Model noise by probability distribution.
• Example: Binary symmetric channel (BSC)

◦ Parameter p ∈ [0, 1

2
].

◦ Channel transmits bits.
◦ With probability 1 − p bit transmitted faithfully, and with

probability p bit flipped (independent of all other events).

Shannon’s architecture

• Sender encodes k bits into n bits.
• Transmits n bit string on channel.
• Receiver decodes n bits into k bits.
• Rate of channel usage = k/n.
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Shannon’s theorem

• Every channel (in broad class) has a capacity s.t.,
transmitting at Rate below capacity is feasible and above
capacity is infeasible.

• Example: Binary symmetric channel (p) has capacity
1 − H(p), where H(p) is the binary entropy function.
◦ p = 0 implies capacity = 1.
◦ p = 1

2
implies capacity = 0.

◦ p < 1

2
implies capacity > 0.

• Example: q-ary symmetric channel (p): On input σ ∈ Fq

receiver receives (independently) σ′, where
◦ σ′ = σ w.p. 1 − p.
◦ σ′ uniform over Fq − {σ} w.p. p.

Capacity positive if p < 1 − 1/q.
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Constructive versions

• Shannon’s theory was non-constructive. Decoding takes
exponential time.

• [Elias ’55] gave polytime algorithms to achieve positive rate
on every channel of positive capacity.

• [Forney ’66] achieved any rate < capacity with polynomial
time algorithms (and exponentially small error).

• Modern results (following [Spielman ’96]) lead to linear time
algorithms.
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Hamming (1950)

• Modelled errors adversarially.
• Focussed on image of encoding function (the “Code”).
• Introduced metric (Hamming distance) on range of

encoding function. d(x, y) = # coordinates such that xi 6= yi.
• Noticed that for adversarial error (and guaranteed error

recovery), distance of Code is important.

∆(C) = min
x,y∈C

{d(x, y)}.

• Code of distance d corrects (d − 1)/2 errors.
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Contrast between Shannon & Hamming
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
E.g., flips each bit independently w.p. p.

✔ Tightly analyzed for many cases e.g., q-SC(p).
✗ Channel may be too weak to capture some scenarios.
✗ Need very accurate channel model.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially

✔ Safer model, “good” codes known
✗ Too pessimistic: Can only decode if p < 1/2 for any

alphabet.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

• Which model is correct? Depends on application.
◦ Crudely: Small q ⇒ Shannon. Large q ⇒ Hamming.

• Today: New Models of error-correction + algorithms.
◦ List-decoding: Relaxed notion of decoding.
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Contrast between Shannon & Hamming

[Sha48] : C probabilistic.
✔ Corrects many errors. ✗ Channel restricted.

[Ham50] : C flips bits adversarially
✗ Fewer errors. ✔ More general errors.

• Which model is correct? Depends on application.
◦ Crudely: Small q ⇒ Shannon. Large q ⇒ Hamming.

• Today: New Models of error-correction + algorithms.
◦ List-decoding: Relaxed notion of decoding.

✔ More errors ✔ Strong (enough) errors.
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Reed-Solomon Codes
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Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
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Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.
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◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.
• Surely we can do better?
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Motivation: [Singleton] Bound

• Suppose C ⊆ F
n
q has qk codewords. How large can its

distance be?
• Bound: ∆(C) ≤ n − k + 1.
• Proof:

◦ Project code to first k − 1 coordinates.
◦ By Pigeonhole Principle, two codewords collide.
◦ These two codewords thus disagree in at most n − k + 1

coordinates.
• Surely we can do better?
• Actually - No! [Reed-Solomon] Codes match this bound!
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Reed-Solomon Codes

m1

m2

m3

m4

x1 x2 x3 x4 x5 x6 x7 x8 x9

•Messages ≡ Polynomial.

•Encoding ≡ Evaluation
at x1, . . . , xn.

•n > Degree: Injective

•n ≫ Degree: Redundant
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Reed-Solomon Codes (formally)

• Let Fq be a finite field.

• Code specified by k, n, α1, . . . , αn ∈ Fq.

• Message: 〈c0, . . . , ck〉 ∈ F
k+1
q coefficients of degree k

polynomial p(x) = c0 + c1x + · · · ckx
k.

• Encoding: p 7→ 〈p(α1), . . . , p(αn)〉. (k + 1 letters to n letters.)
• Degree k poly has at most k roots ⇔ Distance d = n − k.
• These are the Reed-Solomon codes.

Match [Singleton] bound!
Commonly used (CDs, DVDs etc.).
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List-Decoding of Reed-Solomon Codes
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Reed-Solomon Decoding

Restatement of the problem:

Input: n points (αi, yi) ∈ F
2
q ; agreement parameter t

Output: All degree k polynomials p(x) s.t. p(αi) = yi for at
least t values of i.

We use k = 1 for illustration.

i.e. want all “lines” (y − ax − b = 0) that pass through
≥ t out of n points.
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Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.
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Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.
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Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...
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Algorithm Description [S. ’96]

n = 14 points; Want all lines through at least 5 points.

Find deg. 4 poly. Q(x, y) 6≡ 0
s.t. Q(αi, yi) = 0 for all points.

Q(x, y) = y4 − x4 − y2 + x2

Let us plot all zeroes of Q ...

Both relevant lines emerge !

Formally, Q(x, y) factors as:
(x2 + y2 − 1)(y + x)(y − x).
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What Happened?

1. Why did degree 4 curve exist?
◦ Counting argument: degree 4 gives enough degrees of

freedom to pass through any 14 points.

2. Why did all the relevant lines emerge/factor out?
◦ Line ℓ intersects a deg. 4 curve Q in 5 points =⇒ ℓ is a

factor of Q
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Generally

Lemma 1: ∃Q with degx(Q),degy(Q) ≤ D =
√

n passing thru any
n points.

Lemma 2: If Q with degx(Q),degy(Q) ≤ D intersects y − p(x) with
deg(p) ≤ d intersect in more that (D + 1)d points, then
y − p(x) divides Q.
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Efficient algorithm?

1. Can find Q by solving system of linear equations
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Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]
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Efficient algorithm?

1. Can find Q by solving system of linear equations

2. Fast algorithms for factorization of bivariate polynomials
exist (’83-’85) [Kaltofen, Chistov & Grigoriev, Lenstra, von
zur Gathen & Kaltofen]

• Immediate application:
Theorem: Can list-decode Reed-Solomon code from
n − (k + 1)

√
n errors.

• With some fine-tuning of parameters:
Theorem: [S. ’96] Can list-decode Reed-Solomon
code from 1 −

√
2R-fraction errors.
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Improved List-Decoding

List Decoding of Reed Solomon Codes – p. 21/30



Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.
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Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.
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Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

Why?
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Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fitting degree 4 curve Q
as earlier doesn’t work.

Why?

Correct answer has 5 lines.
Degree 4 curve can’t have

5 factors!
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Going Further: Example 2 [Guruswami+S. ’98]

n = 11 points; Want all
lines through ≥ 4 pts.

Fit degree 7 poly. Q(x, y)
passing through each
point twice.

Q(x, y) = · · ·
(margin too small)
Plot all zeroes ...
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Where was the gain?

• Requiring Q to pass through each point twice, effectively
doubles the # intersections between Q and line.
◦ So # intersections is now 8.

• On the other hand # constraints goes up from 11 to 33.
Forces degree used to go upto 7 (from 4).

• But now # intersections is less than degree!

Can pass through each point twice with less than twice the
degree!

• Letting intersection multiplicity go to ∞ gives decoding
algorithm for upto 1 −

√
R errors.
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Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!
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list-decodability.
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Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

• Matches best known “combinatorial” bounds on
list-decodability.

• Open Question: Correct more errors, or show this leads to
exponentially large lists!
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Summary

• Can correct errors in Reed-Solomon codes well beyond
“half the distance” (Hamming) barrier!

• Matches best known “combinatorial” bounds on
list-decodability.

• Open Question: Correct more errors, or show this leads to
exponentially large lists!

• Techniques: The polynomial method, and the method of
multiplicities!
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The Polynomial Method

• Goal: Understand some “combinatorial parameters” of
some algebraically nice set. E.g.,
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The Polynomial Method

• Goal: Understand some “combinatorial parameters” of
some algebraically nice set. E.g.,

Minimum number of points in the union of ℓ sets where
each set is t points from a degree k polynomial = ?

Minimum number of points in K ⊆ F
n
q such that K

contains a line in every direction.
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The Polynomial Method

• Goal: Understand some “combinatorial parameters” of
some algebraically nice set. E.g.,

• Method:

Fit low-degree polynomial Q to the set K.

Infer Q is zero on points outside K, due to algebraic
niceness.

Infer lower bound on degree of Q (due to abundance of
zeroes).

Transfer to bound on combinatorial parameter of
interest.
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Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
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Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤ qn
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Kakeya Sets

• Definition: K ⊆ F
n
q is a Kakeya set if it contains a line in

every direction.
• Question: How small can K be?
• Bounds (till 2007):
∀K, |K| ≥ qn/2

∃K, |K| ≤≈ (q/2)n [Mockenhaupt & Tao]
• In particular, even exponent of q unknown!
• [Dvir’08]’s breakthrough: ∀K, |K| ≥ qn/n!

• Subsequently [Dvir, Kopparty, Saraf, S.]
∀K, |K| ≥ (q/2)n
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Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)
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Polynomial Method and Kakeya Sets
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Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

Show homogenous part of Q zero at y if line in direction
y contained in K.
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Polynomial Method and Kakeya Sets

• [Dvir’08]’s analysis:

Fit low-degree polynomial Q to K. (Interpolation ⇒
Degree not too high if K not large.)

Show homogenous part of Q zero at y if line in direction
y contained in K.

Conclude homogenous part is zero too often!
• [Saraf + S.], [Dvir + Kopparty + Saraf + S.]:

Fit Q to vanish many times at each point of K.

Yields better bounds!
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Conclusions

• Importance of model of error.
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Conclusions

• Importance of model of error.
• Virtues of relaxing some notions (e.g., list-decoding vs.

unique-decoding)
• New algorithmic insights: Can be useful outside the context

of list-decoding (e.g., [Koetter-Vardy] Soft-decision
decoder).

• Central open question:
Constructive list-decodable binary codes of rate
1 − H(ρ) correcting ρ-fraction errors !!
Corresponding question for large alphabets resolved
by [ParvareshVardy05, GuruswamiRudra06].

• New (?) mathematical insights.
• Challenge: Apply existing insights to other practical settings.
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Thank You !!
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