Invariance in Property Testing

Madhu Sudan
Microsoft/MIT
Property Testing

- ... of functions from D to R:
 - Property $P \subseteq \{D \to R\}$

- Distance
 - $\delta(f, g) = \Pr_{x \in D} [f(x) \neq g(x)]$
 - $\delta(f, P) = \min_{g \in P} [\delta(f, g)]$
 - f is ε-close to g ($f \approx_\varepsilon g$) iff $\delta(f, g) \leq \varepsilon$.

- Local testability:
 - P is (k, ε, δ)-locally testable if $\exists k$-query test T
 - $f \in P \Rightarrow T_f$ accepts w.p. $1-\varepsilon$.
 - $\delta(f, P) > \delta \Rightarrow T_f$ accepts w.p. ε.

- Notes: want $k(\varepsilon, \delta) = O(1)$ for $\varepsilon, \delta = \Omega(1)$.
Brief History

- [Blum,Luby,Rubinfeld – S’90]
 - Linearity + application to program testing
- [Babai,Fortnow,Lund – F’90]
 - Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
 - Low-degree testing
- [Goldreich,Goldwasser,Ron]
 - Graph property testing
- Since then ... many developments
 - Graph properties
 - Statistical properties
 - ...
 - More algebraic properties
Specific Directions in Algebraic P.T.

- **More Properties**
 - **Low-degree** \((d < q)\) functions [RS]
 - **Moderate-degree** \((q < d < n)\) functions
 - \(q=2\): [AKKLR]
 - General \(q\): [KR, JPRZ]
 - Long code/Dictator/Junta testing [BGS, PRS]
 - BCH codes (Trace of low-deg. poly.) [KL]

- **Better Parameters** (motivated by PCPs).
 - \#queries, high-error, amortized query complexity, reduced randomness.
My concerns ...

- Relatively few results ...
 - Why can’t we get “rich” class of properties that are all testable?
 - Why are proofs so specific to property being tested?
- What made Graph Property Testing so well-understood?
- What is “novel” about Property Testing, when compared to “polling”?
Contrast w. Combinatorial P.T.

R is a field F; P is linear!

Universe: \{f: D \rightarrow R\}

Must accept
Don’t care
Must reject

Algebraic Property = Code! (usually)
Basic Implications of Linearity [BHR]

- If P is linear, then:
 - Tester can be made non-adaptive.
 - Tester makes one-sided error
 - $(f \in P \Rightarrow \text{tester always accepts})$.

- Motivates:
 - Constraints:
 - k-query test \Rightarrow constraint of size k:
 - value of f at $\alpha_1, \ldots, \alpha_k$ constrained to lie in subspace.
 - Characterizations:
 - If non-members of P rejected with positive probability, then P characterized by local constraints.
 - functions satisfying all constraints are members of P.
Pictorially

- $f = \text{assignment to left}$
- Right = constraints
- Characterization of P:
 $P = \{f \text{ sat. all constraints}\}$

January 8-10, 2010
ITCS: Invariance in Property Testing
Sufficient conditions?

- Linearity + \(k \)-local characterization
 \[\Rightarrow \] \(k \)-local testability?

- [BHR] No!
 - Elegant use of expansion
 - Rule out obvious test; but also any test ... of any \("q(k)" \)-locality

- Why is characterization insufficient?
 - Lack of symmetry?
Example motivating symmetry

- Conjecture (AKKLR ‘96):
 - Suppose property P is a vector space over F_2;
 - Suppose its “invariant group” is “2-transitive”.
 - Suppose P satisfies a k-ary constraint
 - $\forall f \in P, f(\alpha_1) + \ldots + f(\alpha_k) = 0$.

- Then P is $(q(k), \varepsilon(k,\delta),\delta)$-locally testable.

- Inspired by “low-degree” test over F_2. Implied all previous algebraic tests (at least in weak forms).
Invariances

- Property \(P \) invariant under permutation (function) \(\pi: D \to D \), if
 \[f \in P \implies f \circ \pi \in P \]

- Property \(P \) invariant under group \(G \) if
 \[\forall \pi \in G, P \text{ is invariant under } \pi. \]

- Can ask: Does invariance of \(P \) w.r.t. "nice" \(G \) leads to local testability?
Invariances are the key?

- "Polling" works well when (because) invariant group of property is the full symmetric group.

- Modern property tests work with much smaller group of invariances.

- Graph property \sim Invariant under vertex renaming.

- Algebraic Properties & Invariances?
Abstracting Algebraic Properties

- [Kaufman & S.]

- Range is a field F and P is F-linear.
- Domain is a vector space over F (or some field K extending F).

- Property is invariant under affine (sometimes only linear) transformations of domain.

- “Property characterized by single constraint, and its orbit under affine (or linear) transformations.”
Invariance, Orbits and Testability

- Single constraint implies many
 - One for every permutation $\pi \in \text{Aut}(P)$:
 - “Orbit of a constraint C”
 $$ = \{C \circ \pi \mid \pi \in \text{Aut}(P)\} $$

- Extreme case:
 - Property characterized by single constraint +
 its orbit: “Single orbit feature”
 - Most algebraic properties have this feature.
 - W.l.o.g. if domain = vector space over small field.
Example: Degree d polynomials

- **Constraint:** When restricted to a small dimensional affine subspace, function is polynomial of degree d (or less).
 - $\#\text{dimensions} \leq \frac{d}{K - 1}$

- **Characterization:** If a function satisfies above for every small dim. subspace, then it is a degree d polynomial.

- **Single orbit:** Take constraint on any one subspace of dimension $\frac{d}{(K-1)}$; and rotate over all affine transformations.
Some results

- If P is affine-invariant and has k-single orbit feature (characterized by orbit of single k-local constraint); then it is $(k, \delta/k^3, \delta)$-locally testable.
- Unifies previous algebraic tests (in weak form) with single proof.
Analysis of Invariance-based test

- Property P given by $\alpha_1, \ldots, \alpha_k; V \in F^k$

- $P = \{f | f(A(\alpha_1)) \ldots f(A(\alpha_k)) \in V, \forall \text{ affine } A: K^n \rightarrow K^n\}$

- $\text{Rej}(f) = \text{Prob}_A [f(A(\alpha_1)) \ldots f(A(\alpha_k)) \text{ not in } V]$

- Wish to show: If $\text{Rej}(f) < 1/k^3$, then $\delta(f, P) = O(\text{Rej}(f))$.
BLR Analog

- $\text{Rej}(f) = \Pr_{x,y} [f(x) + f(y) \neq f(x+y)] < \epsilon$

- Define $g(x) = \text{majority}_y \{\text{Vote}_x(y)\}$, where $\text{Vote}_x(y) = f(x+y) - f(y)$.

- Step 0: Show $\delta(f,g)$ small

- Step 1: $\forall x, \Pr_{y,z} [\text{Vote}_x(y) \neq \text{Vote}_x(z)]$ small.

- Step 2: Use above to show g is well-defined and a homomorphism.
BLR Analysis of Step 1

- Why is $f(x+y) - f(y) = f(x+z) - f(z)$, usually?

<table>
<thead>
<tr>
<th></th>
<th>$f(z)$</th>
<th>$-f(x+z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(y)$</td>
<td>0</td>
<td>$-f(y)$</td>
</tr>
<tr>
<td>$-f(x+y)$</td>
<td>$-f(z)$</td>
<td>$f(x+y+z)$</td>
</tr>
</tbody>
</table>
Generalization

- \(g(x) = \beta \) that maximizes, over \(A \) s.t. \(A(\alpha_1) = x \),
 \(\Pr_A [\beta, f(A(\alpha_2), \ldots, f(A(\alpha_k))] \in V] \)

- Step 0: \(\delta(f, g) \) small.

- \(\text{Vote}_x(A) = \beta \) s.t. \(\beta, f(A(\alpha_2)), \ldots, f(A(\alpha_k)) \in V \)
 (if such \(\beta \) exists)

- Step 1 (key): \(\forall x \), whp \(\text{Vote}_x(A) = \text{Vote}_x(B) \).
- Step 2: Use above to show \(g \in P \).
Matrix Magic?

Say $A(\alpha_1) \ldots A(\alpha_t)$ independent; rest dependent

Random

Doesn’t Matter!
Some results

- If P is affine-invariant and has k-single orbit feature (characterized by orbit of single k-local constraint); then it is $(k, \delta/k^3, \delta)$-locally testable.
 - Unifies previous algebraic tests with single proof.

- If P is affine-invariant over K and has a single k-local constraint, then it is has a q-single orbit feature (for some $q = q(K,k)$)
 - (explains the AKKLR optimism)
Results (contd.)

- If P is affine-invariant over K and has a single k-local constraint, then it is has a q-single orbit feature (for some $q = q(K,k)$)

- Proof Ingredients:
 - Analysis of all affine invariant properties.
 - Rough characterization of locality of constraints, in terms of degrees of polynomials in the family.

- Infinitely many (new) properties ...
More details

- Understanding invariant properties:
 - Recall: all functions from K^n to F are Traces of polynomials

 \[
 \text{Trace}(x) = x + x^p + x^{p^2} + \ldots + x^{q/p}
 \]

 where $K = F_q$ and $F = F_p$.
 - If P contains $\text{Tr}(3x^5 + 4x^2 + 2)$; then P contains $\text{Tr}(4x^2)$...
 - So affine invariant properties characterized by degree of monomials in family.
 - Most of the study ... relate degrees to upper and lower bounds on locality of constraints.
Some results

- If P is affine-invariant over K and has a single k-local constraint, then it is has a q-single orbit feature (for some $q = q(K,k)$)
 - (explains the AKKLR optimism)
- Unfortunately, q depends inherently on K, not just F ... giving counterexample to AKKLR conjecture [joint with Grigorescu & Kaufman]
- Linear invariance when P is not F-linear:
 - Abstraction of some aspects of Green’s regularity lemma ... [Bhattacharyyya, Chen, S., Xie]
 - Nice results due to [Shapira]
More results

- Invariance of some standard codes
 - E.g. “dual-BCH”: Have k-single orbit feature! So are “more uniformly” testable.

 [Grigorescu, Kaufman, S.]

- Side effect: New (essentially tight) relationships between $\text{Rej}_{\text{AKKL}}(f)$ and $\delta(f,\text{Degree}-d)$ over F_2

 [with Bhattacharyyya, Kopparty, Schoenebeck, Zuckerman]
More results (contd.)

- Invariance of some standard codes
- Side effect: New (essentially tight) relationships between $\text{Rej}_{\text{AKKL}}(f)$ and $\delta(f,\text{Degree}-d)$ over \mathbb{F}_2

- One hope: Could lead to “simple, good locally testable code”?
 - (Sadly, not with affine-inv. [Ben-Sasson, S.])

- Still ... other groups could be used? [Kaufman+Wigderson]
Conclusions

- Invariance seems to be a nice perspective on “property testing” …
 - Certainly helps unify many algebraic property tests.
 - But should be a general lens in sublinear time algorithmics.
Thanks