Semantic Goal-Oriented Communication

Madhu Sudan
Microsoft Research + MIT

Joint with Oded Goldreich (Weizmann) and Brendan Juba (MIT).

September 22, 2010
Disclaimer

- Work in progress (for ever) ...

- Comments/Criticisms welcome.
The Meaning of Bits

- Is this perfect communication?

- What if Alice is trying to send instructions?
 - Aka, an algorithm
 - Does Bob understand the correct algorithm?
 - What if Alice and Bob speak in different (programming) languages?
Miscommunication (in practice)

- Exchanging (powerpoint) slides.
 - Don’t render identically on different laptops.
- Printing on new printer.
 - User needs to “learn” the new printer, even though printer is quite “intelligent”.
- Many such examples ...
 - In all cases, sending bits is insufficient.
 - Notion of meaning ... intuitively clear.
 - But can it be formalized?
 - Specifically? Generically?
 - While conforming to our intuition
Modelling Miscommunication

Semantic Communication Model

Channel
Basic issues

- Source of Miscommunication:
 - A_i doesn’t know j
 - B_j doesn’t know i
- But what do they wish to achieve?
 - Distinguish B_j from B_k?
 - What if they are indistinguishable?
- Thesis: Communication ought to have **Goal!!!**
 - Alice/Bob should strive to achieve Goal.
 - Is there a specific Goal to all communication?
 - Are there many possible Goals?
 - Goal specifies problem, but what is a solution?
Examples of Goals

- In future slides:
 - User communicates/interacts with Server.

- Will try to look at User’s goal.
Communication: Example 1 (Printing)
Communication: Ex. 2 (Computation)
Communication: Ex. 3 (Web search)

\[Q(WWW(P)) = \circlearrowright? \]
Communication: Ex. 4 (Intelligence?)

Yes

No

Semantic Communication @ Berkeley
Aside: Modelling Computing

- Classically: Turing Machine/(von Neumann) RAM.
 - Described most computers being built?

- Modern computers: more into communication than computing.
 - What is the mathematical model of a communicating computer? Why do they communicate? What are all the “communication problems”? What is universality?
Modelling User/Interacting agents

- (standard AI model)

- User has state and input/output wires.
 - Defined by the map from current state and input signals to new state and output signals.
Generic Goal?

- Goal = function of ?
 - User? – But user wishes to change actions to achieve universality!
 - Server? – But server also may change behaviour to be helpful!
 - Transcript of interaction? – How do we account for the many different languages?
Generic Goals

- **Key Idea:** Introduce 3rd entity: Referee
 - Poses tasks to user.
 - Judges success.

- **Generic Goal specified by**
 - Referee *(just another agent)*
 - Boolean Function determining if the state evolution of the referee reflects successful achievement of goal.
 - Class of users/servers.
Generic Goals

- Pure Control

- Pure Informational
Sensing & Universality

- To achieve goal:
 - Server should be “helpful”
 - User should be able to “sense progress”.
 - I.e., user should be compute a function that mimics referee’s verdict.

- General positive result [GJS ’09]:
 - Generic goals (with appropriate definitions) universally achievable if ∃ sensing function.

- General negative result [GJS ’09]:
 - Sensing is necessary (in sufficiently general classes of users/servers).
Implications of “Universality”

- Standard question in linguistics, cognition ...
 - What is a precondition for two entities to come to some “common language”?

- Standard answers:

 - Humans seem to need little commonality (a child can learn any language)

 - But humans share enormous common physical needs and have large common genetic code?

- Is all this necessary?

- Our Answer: No. Compatible goals suffice.
Concrete Example: Computation
Computational Goal for User

- User wants to compute function f on input x.

- Setting:
 - User is probably poly time bounded.
 - Server is computationally unbounded, does not speak the same language as User, but is "helpful".
 - What kind of functions f?
 - E.g., uncomputable, PSPACE, NP, P?
Setup

User

\[f(x) = 0/1? \]

\[R \leftarrow $$$ \]

Server

Different from interactions in cryptography/security:

There, User does not trust Server, while here he does not understand her.

Computes \(P(x, R, a_1, \ldots, a_k) \)

Hopefully \(P(x, \ldots) = f(x)! \)
Intelligence & Cooperation?

- For User to have a non-trivial interaction, Server must be:
 - **Intelligent**: Capable of computing $f(x)$.
 - **Cooperative**: Must communicate this to User.

- Formally:
 - Server S is f-helpful if
 $$\exists \text{ some (other) user } U' \text{ s.t. } \\
 \forall x, \text{ starting states } \sigma \text{ of the server } \\
 (U'(x) \leftrightarrow S(\sigma)) \text{ outputs } f(x)$$
Successful universal communication

- **Universality:** Universal User U should be able to talk to any (every) f-helpful server S to compute f.

- Formally:
 - U is f-universal, if
 - \forall f-helpful S, $\forall \sigma$, $\forall x$
 - $(U(x) \leftrightarrow S(\sigma)) = f(x)$ (w.h.p.)

- What happens if S is not helpful?
 - Paranoid view \Rightarrow output "$f(x)$" or "?"
 - Benign view \Rightarrow Don’t care (everyone is helpful)
Main Theorems [Juba & S. ‘08]

- If \(f \) is PSPACE-complete, then there exists a \(f \)-universal user who runs in probabilistic polynomial time.
 - Extends to checkable (“compIP”) problems
 - \(\text{NP} \cap \text{co-NP} \), breaking cryptosystems
 - \(S \) not helpful \(\Rightarrow \) output is safe

- Conversely, if there exists a \(f \)-universal user, then \(f \) is PSPACE-computable (in “compIP”)
 - Scope of computation by communication is limited by misunderstanding (alone).
Proofs?

- Positive result:
 - \(f \in \text{PSPACE} \Rightarrow \text{membership is verifiable}. \)
 - User can make hypothesis about what the Server is saying, and use membership proof to be convinced answer is right, or hypothesis is wrong. Enumerate, till hypothesis is right.

- Negative result:
 - In the absence of proofs, sufficiently rich class of users allow arbitrary initial behavior, including erroneous ones.
 - (Only leads to finitely many errors ...)
Implications

- Communication is not unboundedly helpful 😞
 - If it were, should have been able to solve every problem (not just \((PSPACE)\) computable ones).
- But there is gain in communication:
 - Can solve more complex problems than on one’s own, but not every such problem.
- Resolving misunderstanding? Learning Language?
 - Formally No! No such guarantee.
 - Functionally Yes! If not, how can user solve such hard problems?
Implications for Language Learning

- Well-explored theme in “linguistics”
 - Semantics learned by functional relevance.
 - But how does one have “common” grounding? Is this a purely a function of having common physical environment + needs?

- Is there a purely intellectual basis for common grounding?

- Our answer: YES!
Towards Efficiency

- Learning of language is not efficient
 - User takes at least \(k \) steps to enumerate \(k \) possible servers (\(k \) possible languages).
 - Can this be made faster?

- Answers:
 - No! Not without assumptions on language ...
 - Yes! If server and user are “broadminded”, and have “compatible beliefs” [JS ‘10]
Broadmindedness, Compatible beliefs:

- Beliefs of server S:
 - Expects users chosen from distribution X.
 - Allows “typical” user to reach goal in time T.

- Beliefs of user U:
 - Anticipates some distribution Y on users that the server is trying to serve.

- Compatibility: $K = (1 - |X - Y|_{TV})$

- Theorem[JS]: U can achieve goal in time $\text{poly}(T/K)$.

September 22, 2010
Semantic Communication @ Berkeley
Conclusions

- Basis of semantic communication: Model "miscommunication"
 - Can be done by allowing users/servers to be variable (members of a set).
 - Such settings seem commonplace, especially in "natural communication", but no prior attempts to model them theoretically (in the context of information transmission).
- Can also look at the "compression" problem.
 - Unveils phenomena reflective of natural communication [Juba, Kalai, Khanna, S. ‘10]
Thank You!