Invariance in Property Testing

Madhu Sudan
Microsoft Research

Based on: works with/of Eli Ben-Sasson, Elena Grigorescu, Tali Kaufman, Shachar Lovett, Ghid Maatouk, Amir Shpilka.
Property Testing

- Sublinear time algorithms:
 - Algorithms running in time $o(\text{input}), o(\text{output})$.
 - Probabilistic.
 - Correct on (approximation) to input.
 - Input given by oracle, output implicit.
 - Crucial to modern context
 - (Massive data, no time).

- Property testing:
 - Restriction of sublinear time algorithms to decision problems (output = YES/NO).
 - Amazing fact: Many non-trivial algorithms exist!
Example 1: Polling

- Is the majority of the population Red/Blue
 - Can find out by random sampling.
 - Sample size \propto margin of error
 - Independent of size of population

- Other similar examples: (can estimate other moments ...)

August 29-30, 2011 Rabin '80: APT
Example 2: Linearity

- Can test for homomorphisms:
 - Given: $f: G \rightarrow H$ (G, H finite groups), is f essentially a homomorphism?
 - Test:
 - Pick x, y in G uniformly, ind. at random;
 - Verify $f(x) \cdot f(y) = f(x \cdot y)$

- Completeness: accepts homomorphisms w.p. 1
 - (Obvious)

- Soundness: Rejects f w.p prob. Proportional to its “distance” (margin) from homomorphisms.
 - (Not obvious, [BlumLubyRubinfeld’90])
History (slightly abbreviated)

- [Blum,Luby,Rubinfeld – S’90]
 - Linearity + application to program testing
- [Babai,Fortnow,Lund – F’90]
 - Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
 - Low-degree testing
- [Goldreich,Goldwasser,Ron]
 - Graph property testing
- Since then ... many developments
 - More graph properties, statistical properties, matrix properties, properties of Boolean functions ...
 - More algebraic properties
Pictorial Summary

All properties

Statistical Properties

Boolean functions

Testable!

Not-testable

Linearity

Low-degree

Graph Properties

August 29-30, 2011

Rabin '80: APT
Some (introspective) questions

- What is qualitatively novel about linearity testing relative to classical statistics?

- Why are the mathematical underpinnings of different themes so different?

- Why is there no analog of “graph property testing” (broad class of properties, totally classified wrt testability) in algebraic world?
Invariance?

- Property \(P \subseteq \{ f : D \to R \} \)
- Property \(P \) invariant under permutation (function) \(\pi : D \to D \), if
 \[
 f \in P \Rightarrow f \circ \pi \in P
 \]
- Property \(P \) invariant under group \(G \) if
 \[
 \forall \pi \in G, P \text{ is invariant under } \pi.
 \]
- Observation: Different property tests unified/separated by invariance class.
Invariances (contd.)

- Some examples:
 - Classical statistics: Invariant under all permutations.
 - Graph properties: Invariant under vertex renaming.
 - Boolean properties: Invariant under variable renaming.
 - Matrix properties: Invariant under mult. by invertible matrix.
 - Algebraic Properties = ?

- Goals:
 - Possibly generalize specific results.
 - Get characterizations within each class?
 - In algebraic case, get new (useful) codes?
Abstracting Linearity/Low-degree tests

- **Affine Invariance:**
 - Domain = Big field (GF(2^n))
 - or vector space over small field (GF(2)^n).
 - Property invariant under affine transformations of domain (x ↦ A.x + b)

- **Linearity:**
 - Range = small field (GF(2))
 - Property = vector space over range.
Testing Linear Properties

Universe: \(\{f : D \rightarrow R\} \)

R is a field F; P is linear!

Algebraic Property = Code! (usually)

P

Must accept

Don’t care

Must reject
Why study affine-invariance?

- Common abstraction of properties studied in [BLR], [RS], [ALMSS], [AKKLR], [KR], [KL], [JPRZ].
 - (Variations on low-degree polynomials)

- Hopes
 - Unify existing proofs
 - Classify/characterize testability
 - Find new testable codes (w. novel parameters)

- Rest of the talk: Brief summary of findings
Basic terminology

- **Local Constraint:**
 - Example: $f(1) + f(2) = f(3)$.
 - Necessary for testing Linear Properties [BHR]

- **Local Characterization:**
 - Example: $\forall x, y, f(x) + f(y) = f(x+y) \iff f \in P$
 - Aka: LDPC code, k-CNF property etc.
 - Necessary for affine-invariant linear properties.

- **Single-orbit characterization:**
 - One linear constraint + implications by affine-invariance.
 - Feature in all previous algebraic properties.
Affine-invariance & testability

- T-local constraint
- T-characterized
- T-locally testable
- T-S-O-C
State of the art in 2007

- \([\text{AKKLR}]: k\text{-constraint} = k'\text{-testable, for all linear affine-invariant properties?}\)
Affine-invariance & testability

- t-local constraint
- t-characterized
- t-locally testable
- t-S-O-C
Some results

- [Kaufman+S.’07]: Single-orbit \Rightarrow Testable.
Affine-invariance & testability

- t-local constraint
- t-characterized
- t-locally testable
- t-S-O-C [KS’08]
Some results

- [Kaufman+S.’07]: Single-orbit \Rightarrow Testable.
 - Unifies known algebraic testing results.
 - Converts testability to purely algebraic terms.
 - Yields “Constraints = Char. = Testability” for vector spaces over small fields.
 - Left open: Domain = Big field.
 - Exist Many “non-polynomial” testable properties

- [GKS’08]: Over big fields, Constraint \neq Char.
- [BMSS’11]: Over big fields, Char \neq Testability.
- [BGMSS’11]: Many questions/conjectures outlining a possible characterization of affine-invariant properties.
Affine-invariance & testability

- weight-k degrees
- k-local constraint
- k-characterized
- k-locally testable
- k-S-O-C [KS’08]

References:
- [BS’10]
- [BMSS’11]
- [GKS’08]

August 29-30, 2011
Rabin ’80: APT
Hopes

- Get a complete characterization of locally testable affine-invariant properties.

- Use codes of (polynomially large?) locality to build better LTCs/PCPs?
 - In particular move from “domain = vector space” to “domain = field”.

- More broadly: Apply lens of invariance more broadly to property testing.
Thank You!