Local List Decoding

Madhu Sudan
Microsoft Research
Overview

- Last 20 years:
 - Lots of work on List Decoding
 - Lots of work on Local Decoding

- Today:
 - A look at the intersection: Local List Decoding
 - Part I: The accidental beginnings
 - Part II: Some applications
 - Part III: Some LLD codes
 - Part IV: Current works
Part I: History
List Decodable Code

- Encoding function: $E: \Sigma^k \rightarrow \Sigma^n$
- Code: $C = \text{Image}(E)$
- (ρ, L) -List-Decodable Code: $\forall r \in \Sigma^n,$
 \[\# \{ w \in C \mid \Delta(r, w) \leq \rho \cdot n \} \leq L.\]
- List-decoder: Outputs list, given $r.$

- [Elias ’57, Wozencraft ‘58]
Local (Unique) Decoding

- **ρ-decoder:**
 - Has access to \(r \) s.t. \(\Delta(r, E(m)) \leq \rho \cdot n \)
 - Outputs \(m \).

- **ρ-local decoder:**
 - Has query access to \(r: [n] \rightarrow \Sigma \).
 - Input: \(i \in [k] \)
 - Outputs: \(m_i \)

- **(ρ,t)-LDC:** makes \(\leq t \) queries for every \(r,i \).
Local List Decoding

- ρ-List decoder:
 - Access to \(r \in \Sigma^n \)
 - Outputs \(\{m_1, \ldots, m_L\} = \{m \mid \Delta(r, E(m)) \leq \rho.n\} \)

- (ρ,t)-list decoder:
 - Query access to \(r:[n] \rightarrow \Sigma \)
 - Inputs: \(i \in [k], j \in [L] \)
 - Outputs: \((m_j)_i \)

Note: numbering \(m_1, \ldots, m_L \) may be arbitrary; but consistent as we vary \(i \).
(Convoluted) History

- **1950 [Reed+Muller]:**
 - Code due to Muller; Decoder due to Reed.
 - “Majority-logic” decoder: Essentially a local decoder for $p < \text{distance}/2$,
 - Not stated/analyzed in local terms.

- **1957 [Elias]**
 - Defined List Decoding.
 - Analyzed in “random-error” setting only.

- **[1980s]** Many works on random-self-reducibility
 - Essentially: Local decoders (for un/natural codes).
(Convoluted) History

- **1986 [Goldreich-Levin]:**
 - Local List-decoder for Hadamard code.
 - No mention of any of the words in paper.
 - “List-decoding” in acknowledgments.
 - But idea certainly there – also in [Levin 85]
 - (many variations since: KM, GRS).

- **90-92 [BeaverFeigenbaum, Lipton, GemmellLiptonRubinfeldSWigderson,GemmellS.]:**
 - Local decoder for generalized RM codes.

- **96,98 [Guruswami+S]:**
 - List-decoder for Reed-Solomon codes.
(Convoluted) History

- **1999** [S. Trevisan Vadhan]:
 - Local List-Decoding defined
 - LLD for Generalized RM code.

- **2000** [Katz Trevisan]:
 - Local Decoding defined.
 - Lower bounds for LDCs.
Why Convoluted?

- What is convoluted?
 - Big gap (positive/negative) between definitions and algorithms

- Why?
 - Motivations/Applications changing.
 - Algorithms not crucial to early applications
 - Some applications needed specific codes
 - Different communities involved
 - Information theory/Coding theory
 - CS: Complexity/Crypto/Learning
Part II: Applications
Hardcore Predicates

- \(f: \{0,1\}^n \rightarrow \{0,1\}^n \) is a OWF if
 - \(f \) easy to compute
 - \(f^{-1} \) hard on random inputs:
 - random: given \(y = f(x) \) for uniform \(x \), output \(x' \) in \(f^{-1}(y) \).
 - hard: every polytime alg. succeeds with negligible probability.

- \(b: \{0,1\}^n \rightarrow \{0,1\} \) is hardcore predicate for \(f \), if \(f \) remains hard to invert given \(b(x) \) and \(f(x) \)
Hardcore Predicates

- $b : \{0,1\}^n \times [M] \rightarrow \{0,1\}$ is a (randomized) hardcore predicate for f, if $b(x,s)$ hard to predict w.p. $\frac{1}{2} + \epsilon$, given $f(x)$ and s.

- [BlumMicali,Yao,GoldreichLevin]:
 1-1 owf f + hardcore $b \Rightarrow$ pseudorandom generator.

- [GoldreichLevin,Impagliazzo]:
 If $E : \{0,1\}^k \rightarrow \{0,1\}^m$ is a $(\frac{1}{2} - \epsilon,\text{poly}(n))$-LLDC, then $b(x,s) = E(x)_s$ is a hardcore predicate for every owf f.

March 2, 2011
Local List Decoding @ IPAM
Proof of [GL, I]

- Suppose A predicts $b(x,s)$ given $f(x)$, s
- Fix $f(x)$; let $r(s) = A(f(x),s)$.
- Run Decoder(r,i,j) for all i,j to recover $\{x_1, \ldots, x_L\}$.
- Check if $f(x_j) = f(x)$!
- (Easy) Claim: This recovers $f^{-1}(f(x))$ w.h.p.
Thoughts

- Did [GL] really need Local List-Decoding?
 - No. Simple LDC mapping k to $\text{poly}(k)$ bits would do.
 - Unfortunately, none was known with $\text{poly}(k)$ time list-decoder.
 - GL: Designed $(\frac{1}{2} - \epsilon, \text{poly}(k))$-LLDC for Hadamard code (which maps k bits to 2^k bits).
Hardness amplification

- Classical quest in complexity:
 - Find hard functions (for some class). E.g.,
 - $f \in \text{NP} - \text{P}$
 - $f \in \text{PSPACE} - \text{P}$
 - Story so far: Can’t find such.

- Modern question:
 - Find functions that are really hard.
 - Boolean $f \in \text{NP}$ that is hard to distinguish from random function in P.
Hardness amplification

- Thm [Lipton, ..., S. Trevisan Vadhan]:
 - Let $f: \{0,1\}^k \to \{0,1\}$ be a hard to compute in time $\text{poly}(k)$.
 - Let $E: \{0,1\}^K \to \{0,1\}^N$ be $(\frac{1}{2}-\varepsilon, \text{poly}(k))$ locally-list-decodable with $K = 2^k$, $N = 2^n$.
 - Then $g: \{0,1\}^n \to \{0,1\}$ given by $g = E(f)$ is hard to distinguish from random for $\text{poly}(k)$ time algorithms.

- Proof: Obvious from definitions.
Agnostic Learning

- General goal of learning theory:
 - Given a class of functions F;
 - query/sample access to $f \in F$;
 - “Learn f” (or circuit (approx.) computing it).

- Learning with Noise:
 - f not in F, but well-approximated by some function in F

- Agnostic Learning:
 - No relationship between f and F;
 - learn some approximation of f in F (if it exists).

- Useful in applications, as well as theory.
Agnostic Learning (contd.)

- GL result (Kushilevitz-Mansour interpretation):
 - Can agnostically learn linear approximations to Boolean functions, with queries.

- Kushilevitz-Mansour:
 - List-decoding helps even more: Can learn decision trees.

- Jackson:
 - Also CNF/DNF formulae ...
Part III: Some LLD Codes
Hadamard Code

- Code: Maps $\{0,1\}^k \rightarrow \{0,1\}^{2^k}$.

- Codewords:
 - functions from $\{0,1\}^k \rightarrow \{0,1\}$.
 - Encoding of $m = <m_1, \ldots, m_k>$ is the function $E_m(y_1 \ldots y_k) = \Sigma_{i=1}^{k} m_i y_i \pmod{2}$.
 - I.e., codewords are homogenous, k-variate, degree 1 polynomials over $\mathbb{GF}(2)$.
Decoding Hadamard Code (GL/KM)

- Preliminaries:
 - View words as functions mapping to \{+1,-1\}.
 - \(<f,g> = \text{Exp}_y \[f(y).g(y)\].
 - \(<E(a),E(b)> = 0 \text{ if } a \neq b \text{ and } 1 \text{ o.w.}
 - Let \(f_a = <f,E(a)>\).
 - Then \(f[x] = \sum_a f_a E(a)[x]\)
 - For all \(f\), \(\sum_a f_a^2 = 1\).

- \((\frac{1}{2} - \epsilon)\)-List decoding: Given \(f\), find all \(a\) such that \(f_a > 2\epsilon\).
Decoding Hadamard Code [GL/KM]

- Consider 2^n sized binary tree.
- Node labelled by path to root.
- Value of leaf $a = f_a^2$
- Value of node
 $= \text{sum of children values}$

- Main idea: Can approximate value of any node
 $\sum_b f_{ab}^2 = \text{Exp}_{x,y,z} [f(xz).f(yz).E_a(x).E_a(y)]$

- Algorithm:
 - Explore tree root downwards.
 - Stop if node value less than ϵ^2
 - Report all leaves found.
(Generalized) Reed-Muller Code

- Message space = \(m \)-variate, degree \(r \) polynomials over \(GF(q) \).

- Encoding: Values over all points.
 - \(k = \binom{m+r}{r} \)
 - \(n = q^m \)
 - distance = \(1 - \frac{r}{q} \) (if \(r < q \)).
 \[\approx q^{-\frac{r}{(q-1)}} \] if \(r > q \).

- Decoding problem: Given query access to function that is close to polynomial, find all nearby polynomials, locally.
Decoding (contd.)

- Specifically:
 - Given query access to f, and $x \in \text{GF}(q)^m$
 - Output $p_1(x), \ldots, p_L(x)$ “consistently”, where p_j’s are polynomials within distance ρ of f.

- How to index the codewords?
 - By values at a few (random) points in $\text{GF}(q)^m$.
 - Claim: Specifying value of p at (roughly) $\log_q L$ points specifies it uniquely (given f).
Decoding (contd.)

- Refined question:
 - Given query access to \(f \), and values \(p_j(y_1), \ldots, p_j(y_t) \), and \(x \);
 - Compute \(p_j(x) \)

- Alg [Rackoff, STV, GKZ]
 - Pick random (low-dim) subspace containing \(y_1, \ldots, y_t \) and \(x \).
 - Brute force decode \(f \) restricted to this subspace.
Part IV: Current Directions
Many interpretations of GL

- List-decoder for group homomorphisms [Dinur Grigorescu Kopparty S.]
 - Set of homomorphisms from G to H form an error-correcting code.
 - Decode up to minimum distance?

- List-decoder for sparse high-distance linear codes [Kopparty Saraf]

- List-decoder for Reed-Muller codes [Gopalan Klivans Zuckerman]
Approximate List-Decoding

- Given \(r \), approximately compute \(w \) in \(C \) that is somewhat close to \(r \).

- Easier problem, so should be solvable for broader class of codes \(C \) (\(C \) need not have good distance).

- [O’Donnell, Trevisan, IJK]: If encoder for \(C \) is monotone and local, then get hardness amplification for NP.

- [IJK] Give approximate-LLD for “truncated Hadamard code”.
Conclusions

- Intersection of Locality and List-decoding is interesting and challenging.

- Ought to be explored more?
Thank You!