Limits of Local Algorithms in Random Graphs

Madhu Sudan
MSR

Joint work with David Gamarnik (MIT)
Main Result

• **Background:** Almost surely, random d-regular graph on n vertices has independent set of size \((1 + o(1)) \cdot c_d \cdot n\) for \(c_d = \frac{2}{d} \log d\).

• Can you find such a large independent set?
 − Greedy finds one of half this size.

• **Our Theorem:** “Local algorithms” can not. In fact they fall short by a constant factor.
Definition: Local Algorithms

• Informally: Local algorithms
 – Input = Communication network.
 – Wish to use local communication to compute some property of input.
 – In our case – large independent set in graph.
 – Allowed to use randomness, generated locally.
Formally

• (Randomized) Decision Algorithm:
 – \(f(u, G, \vec{w}) \in \{0,1\} \): Determines if \(u \in I \).
 • \(\vec{w} \) is a weighting, say in \([0,1]\), on vertices

• Correctness:
 – \(\forall u, v, G, \vec{w} \) s.t. \(u \leftrightarrow_G v \),
 \[
 f(u, G, w) = 0 \text{ or } f(v, G, w) = 0.
 \]

• Locality:
 – \(f \) is \(r \)-local if \(f(u, G, \vec{w}) = f(v, H, \vec{x}) \) whenever \(r \)-local weighted neighborhood around \(u \) in \((G, \vec{w}) \) and \(v \) in \((H, \vec{x}) \) are identical.
Locality \neq Locality

• Locality in distributed algorithms
 – Usually algorithms try to compute some function of input graph, on the graph itself.
 – Algorithm uses data available topologically locally.
 – Leads to our model

• Locality a la Codes/Property Testing
 – Locality simply refers to number of queries to input.
 – More general model.
 – We can’t/don’t deal with it.
Motivations for our work

1. Paucity of “complexity” results for random graphs. Major exceptions:
 - Rossman: AC^0/Monotone complexity of planted clique.
 - Feige-Krauthgamer/Meka-Wigderson: SDP relaxations.

2. Physicists explanation of complexity
 - Clustering/Shattering explain inability of algorithms.

3. Graph Limit theory
 - Local characteristics of (random) graphs predict global properties (nearly).
Motivations (contd.)

• Specific conjecture [Hatami-Lovasz-Szegedy]:
 As \(r \to \infty \), \(r \)-local algorithms should find
 independent sets of cardinality \(c_d (1 - o(1)) n \).

• Refuted by our theorem.
Proof

• Part I:

 – A clustering phenomenon for independent sets in random graphs [Inspired by Coja-Oglan].

• Part II:

 – Locality \Rightarrow Continuity \Rightarrow \neg(Clustering).

Both parts simple.
Clustering Phenomena

• Generally:
 – When you look at “near-optimal” solutions, then they are very structured.
 – ⇒ topology of solutions highly disconnected (in Hamming space).

• In our context
 – Consider graph on independent sets (of size \(\approx c_d n \)) with \(I \leftrightarrow J \) if \(|I \Delta J| \leq \epsilon \cdot n \).
 – Highly disconnected?
Clustering Theorem

• Theorem: \(\forall d, \exists 0 < \theta < \tau < c_d \) s.t.:
 – Almost surely over \(G \), \(\forall I, J \) of size \(\approx c_d n \),
 \[
 \frac{|I \cap J|}{n} \notin (\theta, \tau)
 \]

• Proof:
 – Compute expected number of independent sets with forbidden intersection and note it is \(\ll 1 \).
 – Second moment proves concentration.

• Implies Clustering.
Locality $\Rightarrow \neg$(Clustering)

- **Main Idea:**
 - Fix r-local function f, that usually produces independent sets of size $\approx c_d \cdot n$
 - Sample weights twice: \vec{w}, and then \vec{x}; p-correlatedly.
 - Let $I = f(G, \vec{w})$ and $J = f(G, \vec{x})$.
 - Prove:
 - whp, $|I|, |J| \approx c_d \cdot n$
 - whp, $|I \cap J| \approx \beta(p) \cdot n$
 - $\exists p$ s.t. $\beta(p) \in (\theta, \tau)$
Size of Ind. Set

• Claim: Size of independent set produced by local algorithms is concentrated.
 – Let $\alpha = \alpha(f) = E_{\vec{w}}[f(u, T_d, \vec{w})]$
 (where T_d = infinite tree of degree d)
 – W.p. 1-o(1), size of ind. set produced $\approx \alpha \cdot n$.

• Proof:
 – Most neighborhoods are trees \Rightarrow Expectation.
 – Most neighborhoods are disjoint \Rightarrow Chebychev.
\(p \)-correlated distributions

- Pick \(\vec{w}, \vec{y} \in [0,1]^n \), independently.
- Let \(\vec{x}_i = \vec{w}_i \) w.p. \(p \) and \(\vec{y}_i \) otherwise, independently for each \(i \).
- Let \(\beta(p) = \mathbb{E}_{\vec{w},\vec{x}}[f(u, T_d, \vec{w}) \land f(u, T_d, \vec{x})] \)
- As in previous argument:
 - \(\mathbb{E}[|I \cap J|] \approx \beta(p) \cdot n \)
 - \(|I \cap J| \) concentrated around expectation.
Continuity of $\beta(p)$

- Fix \vec{w}, \vec{y}, and consider
 $$\Pr[f(u, T_d, \vec{w}) \land f(u, T_d, \vec{x})]$$

- Above expression is some polynomial in p, of degree at most d^r.

- In particular, it is continuous as function of p.

- $\Rightarrow \beta(p)=$Expectation over \vec{w}, \vec{y} is also continuous.

- Suffices to show $[\beta(0), \beta(1)] \cap (\theta, \tau) \neq \emptyset$.

7/11/2013 Local Algorithms on Random Graphs 14 of 17
Continuity (contd.)

- \(\beta(p) = \mathbb{E}_{\vec{w}, \vec{x}}[f(u, T_d, \vec{w}) \land f(u, T_d, \vec{x})] \)
- \(\beta(1) = \alpha(f) \approx c_d \)
- \(\beta(0) = \alpha^2 \approx c_d^2 \)
- Follows from calculations (also naturally) that
 - \([\beta(0), \beta(1)] \cap (\theta, \tau) \neq \emptyset\)
- Conclude:
 - \(\text{w.h.p.}, |I|, |J| \approx c_d \cdot n\)
 - \(\text{w.h.p.}, |I \cap J| \approx \beta(p) \cdot n\)
 - \(\exists p \text{ s.t. } \beta(p) \in (\theta, \tau)\)
Conclusions

• “Clustering” is an obstacle?
• Answer:
 – At least to local algorithms.
 – Local algorithms behave continuously, forcing non-clustering of solutions.
• Open questions:
 – Barrier to local algorithms in general sense?
 – To other complexity classes?
Thank You