Reliable Meaningful Communication

Madhu Sudan
Microsoft, Cambridge, USA
Reliable Communication?

- Problem from the 1940s: Advent of digital age.

- Communication media are always noisy
 - But digital information less tolerant to noise!
Theory of Communication

- [Shannon, 1948]
 - Model for noisy communication channels
 - Architecture for reliable communication
 - Analysis of some communication schemes
 - Limits to any communication scheme
Modelling Noisy Channels

- Channel = Probabilistic Map from Input to Output
 - Example: Binary Symmetric Channel (BSC(p))
Some limiting values

- $p=0$
 - Channel is perfectly reliable.
 - No need to do anything to get 100% utilization
 (1 bit of information received/bit sent)

- $p=\frac{1}{2}$
 - Channel output independent of sender’s signal.
 - No way to get any information through.
 (0 bits of information received/bit sent)
Lessons from Repetition

- Can repeat (retransmit) message bits many times
 - E.g., 0100 → 000 111 000 000
 - Decoding: take majority
 - E.g., 010 110 011 100 → 0110
 - Utilization rate = 1/3
 - More we repeat, more reliable the transmission.
 - More information we have to transmit, less reliable is the transmission.
- Tradeoff inherent in all schemes?
- What do other schemes look like?
Shannon’s Architecture

- Sender “Encodes” before transmitting
- Receiver “Decodes” after receiving
- Encoder/Decoder arbitrary functions.

\[E: \{0,1\}^k \rightarrow \{0,1\}^n \]
\[D: \{0,1\}^n \rightarrow \{0,1\}^k \]

- Rate = \(\frac{k}{n} \);
- Hope: Usually \(m = D(E(m) + \text{error}) \)
Shannon’s Analysis

- Coding Theorem:
 - For every p, there exists Encoder/Decoder that corrects p fraction errors with high probability with Rate $\rightarrow 1 - H(p)$
 - $H(p)$: Binary entropy function:
 - $H(p) = p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1-p}$
 - $H(0) = 0; H\left(\frac{1}{2}\right) = 1; H(p)$ monotone $0 < p < \frac{1}{2}$
 - So if $p = .499$; Channel still has utility!
 - Note on probability: Goes to 1 as $k \rightarrow \infty$
Limit theorems

- Converse Coding Theorem:
 - If Encoder/Decoder have Rate $R > 1 - H(p)$ then decoder output wrong with prob. $1 - \exp(-n)$.

- Entropy is right measure of loss due to error.
- Entropy = ?
 - Measures uncertainty of random variable.
 - (In our case: Noise).
An aside: Data Compression

- Noisy encoding + Decoding ⇒ Message + Error
 - (Receiver knows both).
 - Total length of transmission = \(n \)
 - Message length = \(n - H(p) \cdot n \)
 - So is error-length = \(H(p) \cdot n \)?

- Shannon’s Noiseless Coding Theorem:
 - Information (modelled as random variable) can be compressed to its entropy ... with some restrictions
 - General version due to Huffman
1948-2013?

- [Hamming 1950]: Error-correcting codes
 - More “constructive” look at encoding/decoding functions.
- Many new codes/encoding functions:
 - Based on Algebra, Graph-Theory, Probability.
- Many novel algorithms:
 - Make encoding/decoding efficient.
- Result:
 - Most channels can be exploited.
 - Even if error is not probabilistic.
 - Profound influence on practice.
Modern Challenges
New Kind of Uncertainty

- Uncertainty always has been a central problem:
 - But usually focusses on uncertainty introduced by the channel
 - Rest of the talk: Uncertainty at the endpoints (Alice/Bob)

- Modern complication:
 - Alice+Bob communicating using computers
 - Both know how to program.
 - May end up changing encoder/decoder (unintentionally/unilaterally).

- Alice: How should I “explain” to Bob?
- Bob: What did Alice mean to say?
New Era, New Challenges:

- Interacting entities not jointly designed.
 - Can’t design encoder+decoder jointly.
 - Can they be build independently?
 - Can we have a theory about such?
 - Where we prove that they will work?

- Hopefully:
 - YES
 - And the world of practice will adopt principles.
Example Problem

- Archiving data
 - Physical libraries have survived for 100s of years.
 - Digital books have survived for five years.
 - Can we be sure they will survive for the next five hundred?

- Problem: Uncertainty of the future.
 - What formats/systems will prevail?
 - Why aren’t software systems ever constant?
Challenge:

- If Decoder does not know the Encoder, how should it try to guess what it meant?

- Similar example:
 - Learning to speak a foreign language
 - Humans do ... (?)
 - Can we understand how/why?
 - Will we be restricted to talking to humans only?
 - Can we learn to talk to “aliens”? Whales?

- Claim:
 - Questions can be formulated mathematically.
 - Solutions still being explored.
Modelling uncertainty

Uncertain Communication Model
Classical Shannon Model

Channel

New Class of Problems
New challenges
Needs more attention!
Language as compression

- Why are dictionaries so redundant + ambiguous?
 - Dictionary = map from words to meaning
 - For many words, multiple meanings
 - For every meaning, multiple words/phrases
 - Why?

- Explanation: “Context”
 - Dictionary:
 - Encoder: Context1 \times Meaning \rightarrow Word
 - Decoder: Context2 \times Word \rightarrow Meaning
 - Tries to compress length of word
 - Should works even if Context1 \neq Context2

- [Juba, Kalai, Khanna, S’11], [Haramaty, S’13]: Can design encoders/decoders that work with uncertain context.
A challenging special case

- Say Alice and Bob have rankings of N movies.
 - Rankings = bijections $\pi, \sigma : [N] \to [N]$
 - $\pi(i) =$ rank of i^{th} player in Alice’s ranking.
- Further suppose they know rankings are close.
 - $\forall i \in [N]: |\pi(i) - \sigma(i)| \leq 2.$
- Bob wants to know: Is $\pi^{-1}(1) = \sigma^{-1}(1)$
- How many bits does Alice need to send (non-interactively).
 - With shared randomness – $O(1)$
 - Deterministically?
 - $O(1)$? $O(\log N)$? $O(\log \log \log \log N)$?
Meaning of Meaning?

- Difference between meaning and words
 - Exemplified in
 - Turing machine vs. universal encoding
 - Algorithm vs. computer program
 - Can we learn to communicate former?
 - Many universal TMs, programming languages

- [Juba,S.’08], [Goldreich,Juba,S.’12]:
 - Not generically ...
 - Must have a goal: what will we get from the bits?
 - Must be able to sense progress towards goal.
 - Can use sensing to detect errors in understanding, and to learn correct meaning.

- [Leshno,S’13]:
 - Game theoretic interpretation
Communication as Coordination Game
[Leshno,S.'13]

- Two players playing series of coordination games
 - Coordination?
 - Two players simultaneously choose 0/1 actions.
 - “Win” if both agree:
 - Alice’s payoff: not less if they agree
 - Bob’s payoff: strictly higher if they agree.
 - How should Bob play?
 - Doesn’t know what Alice will do. But can hope to learn.
 - Can he hope to eventually learn her behavior and (after finite # of miscoordinations) always coordinate?

- Theorem:
 - Not Deterministically (under mild “general” assumptions)
 - Yes with randomness (under mild restrictions)
Summary

- Understanding how to communicate meaning is challenging:
 - Randomness remains key resource!
 - Much still to be explored.
 - Needs to incorporate ideas from many facets
 - Information theory
 - Computability/Complexity
 - Game theory
 - Learning, Evolution ...
- But Mathematics has no boundaries ...
Thank You!