

Madhu Sudan MSR

Joint work with Alan Guo (MIT) and Swastik Kopparty (Rutgers)

IAS - Lifted Codes

Error-Correcting Codes

- (Linear) Code $C \subseteq \mathbb{F}_q^n$.
 - $n \stackrel{\text{\tiny def}}{=} \text{block length}$
 - $-k = \dim(C) \stackrel{\text{\tiny def}}{=} \text{message length}$
 - $-R(C) \stackrel{\text{def}}{=} k/n$: Rate of C (want as high as possible)

$$-\delta(C) \stackrel{\text{\tiny def}}{=} \min_{x \neq y \in C} \{\delta(x, y) \stackrel{\text{\tiny def}}{=} \Pr_i[x_i \neq y_i]\}.$$

- Basic Algorithmic Tasks
 - Encoding: map message in \mathbb{F}_q^k to codeword.
 - Testing: Decide if $x \in C$
 - Correcting: If $x \notin C$, find nearest $y \in C$ to x.

Locality in Algorithms

- "Sublinear" time algorithms:
 - Algorithms that run in time o(input), o(output).
 - Assume random access to input
 - Provide random access to output
 - Typically probabilistic; allowed to compute output on <u>approximation</u> to input.
- LTCs: Codes that have sublinear time testers.
 - Decide if $x \in C$ probabilistically.
 - Allowed to accept x if $\delta(x, C)$ small.
- LCCs: Codes that have sublinear time correctors.

- If $\delta(x, C)$ is small, compute y_i , for $y \in C$ closest to x.

LTCs and LCCs: Formally

- C is a (ℓ, ϵ) -LTC if there exists a tester that
 - Makes $\ell(n)$ queries to x.
 - Accept $x \in C$ w.p. 1
 - Reject x w.p. at least $\epsilon \cdot \delta(x, C)$.
- C is a (ℓ, ϵ) -LCC if exists decoder D s.t.
 - Given oracle access x close to $y \in C$, and i
 - Decoder makes $\ell(n)$ queries to x.
 - Decoder $D^{x}(i)$ usually outputs y_i .
 - $\Pr_i[D^x(i) \neq y_i] \leq \delta(x, y)/\epsilon$
- Often: ignore ϵ and focus on ℓ

Example: Multivariate Polynomials

- Message = multivariate polynomial; encoding = evaluations everywhere.
 - $\operatorname{RM}[m, d, q] \stackrel{\text{\tiny def}}{=} \\ \{ \langle f(\alpha) \rangle_{\alpha \in \mathbb{F}_q^m} | f \in \mathbb{F}_q[x_1, \dots, x_m], \deg(f) \le d \}$
- Locality?
 - Restrictions of low-degree polynomials to lines yield low-degree (univariate) polynomials.
 - Random lines sample \mathbb{F}_q^m uniformly (pairwise independently).

LDCs and LTCs from Polynomials

• Decoding $(d \leq q)$:

- Problem: Given $f \approx p, \alpha \in \mathbb{F}_q^m$, compute $p(\alpha)$.

- Pick random β and consider $f|_L$ where $L = \{\alpha + t \beta \mid t \in \mathbb{F}_q\}$ is a random line $\ni \alpha$.
- Find univ. poly $h \approx f|_L$ and output $h(\alpha)$
- Testing $(d \leq q)$:

- Verify $\deg(f|_L) \leq d$.

• Parameters:

$$-n = q^m; \ell = q = n^{\frac{1}{m}}; R(C) \approx \left(\frac{1}{m}\right)^m$$

Decoding Polynomials

- d < q
 - Correct more errors (possibly list-decode)
 - can correct $\approx 1 \sqrt{d/q}$ fraction errors [STV].
- d > q
 - Distance of code $\delta \approx q^{-d/(q-1)}$
 - Decode by projecting to $\approx \frac{d}{q-1}$ dimensions. "decoding dimension".
 - Locality $\approx 1/\delta$.
 - Lots of work to decode from $\approx \delta$ fraction errors [GKZ,G].
 - Open when q = d = 3 [Gopalan].

Testing Polynomials

• $d \ll q$:

 Even slight advantage on test implies correlation with polynomial.[RS, AS]

• d > q:

- Testing dimension $t = \frac{d}{q - \frac{q}{p}}$; where $q = p^s$;

Project to t dimensions and test.

$$-(q^t,\min\{\epsilon_q,q^{-2t}\})$$
-LTC.

Testing vs. Decoding dimensions

- Why is decoding dimension d/(q-1) ?
 - Every function on fewer variables is a degree d polynomial. So clearly need at least this many dimensions.
- Why is testing dimension d/(q q/p) ?

- Consider
$$q=2^s$$
 and $f=x^{\frac{q}{2}}y^{\frac{q}{2}}$

- On line y = ax + b,

$$-f = x^{\frac{q}{2}} (ax+b)^{\frac{q}{2}} = x^{\frac{q}{2}} \left(a^{\frac{q}{2}} x^{\frac{q}{2}} + b^{\frac{q}{2}} \right) = a^{\frac{q}{2}} x + b^{\frac{q}{2}} x^{\frac{q}{2}}.$$

- So deg(f) = q, but f has degree $\leq \frac{q}{2}$ on every line!
- In general if $q = p^s$ then powers of p pass through (...)
- Aside: Using more than testing dimension has not paid dividend with one exception [RazSafra]

Other LTCs and LDCs

- Composition of codes yields better LTCs.
 - Reduces $\ell(\cdot)$ (to even 3) without too much loss in R(C).
 - But till recently, $R(C) \leq \frac{1}{2}$
- LDCs
 - Till 2006, multivariate polynomials almost best known.
 - 2007+ [Yekhanin, Raghavendra, Efremenko] great improvements for $\ell(n) = O(1)$; n = superpoly(k).
 - 2010 [KoppartySarafYekhanin] Multiplicity codes get R(C) → 1 with $\ell(n) = n^{\epsilon}$
 - For $\ell(n) = \log n$; multiv. Polys are still best known.

Today

- New Locally Correctible and Testable Codes from "Lifting".
 - $-R(C) \rightarrow 1$; $\ell(n) = n^{\epsilon}$ for arbitrary $\epsilon > 0$.
 - First "LCCs + LTCs" to achieve this.
 - Only the second "LCCs" with this property
 - After Multiplicity codes [KoppartySarafYekhanin]

The codes

- Alphabet: \mathbb{F}_q
- Coordinates: \mathbb{F}_q^m
- Parameter: degree d
- Message space:
 - $\{f: \mathbb{F}_q^m \to \mathbb{F}_q \mid \deg(f|_L) \le d, \forall \text{ lines } L\}$
- Code: Evaluations of message on all of \mathbb{F}_q^m
- And oh ... $q = 2^{s}$; $d = (1 \epsilon)q$; m = O(1)

Recall: Bad news about $\mathbb{F}_{2^{s}}$

- Functions that look like degree d polynomials on every line ≠ degree d m-variate polynomials.
- But this is good news!
 - Message space includes all degree d polynomials.
 - And has more.
 - So rate is higher!
 - But does this make a quantitative difference?
 - As we will see ... **YES!** Most of the dimension comes from the ``illegitimate'' functions.

Generalizing: Lifted Codes

- Consider $B \subseteq \{\mathbb{F}_Q^t \to \mathbb{F}_q\}.$
 - $-\mathbb{F}_Q$ extends \mathbb{F}_q

- Preferably *B* invariant under affine transformations of \mathbb{F}_Q^t .

- Lifted code $C \stackrel{\text{def}}{=} \text{Lift}_m(B) \subseteq \{\mathbb{F}_Q^m \to \mathbb{F}_q\}$ $-C = \{f \mid f|_A \in B, \forall t \text{-dim. affine subspaces } A\}.$
- Previous example:

 $-B = \{f \colon \mathbb{F}_q \to \mathbb{F}_q \mid \deg(f) \le d\}$

Properties of lifted codes

• Distance:

 $-\delta(\mathcal{C}) \ge \delta(\mathcal{B}) - Q^{-t} + Q^{-m} \approx \delta(\mathcal{B})$

- Local Decodability:
 - Same decoding algorithm as for RM codes.
 - B is (ℓ, ϵ) -LDC implies C is $(\ell, \Omega(\epsilon))$ -LDC.
- Local Testability?

Local Testability of lifted codes

• Local Testability:

- Test: Pick A and verify $f|_A \in B$.
- "Single-orbit characterization": (Q^t, Q^{-2t}) -LTC [KS]
- (Better?) analysis for lifted tests: (Q^t, ϵ_Q) -LTC [HRS] (extends [BKSSZ,HSS])
- Musings:
 - Analyses not robust (test can't accept if $f|_A \approx B$.)
 - Still: generalizes almost all known tests ... [Main exceptions [ALMSS,PS,RS,AS]].
 - Key question: what is min K s.t. $f|_{A_1}, ..., f|_{A_K} \in B \Rightarrow$ there exists an interpolator $g \in C$ s.t. $g|_{A_i} = f|_{A_i}$

Returning to (our) lifted codes

- Distance 🗸
- Local Decodability ✓
- Local Testability
- Rate?
 - No generic analysis; has to be done on case by case basis.
 - Just have to figure out which monomials are in C.

Rate of bivariate Lifted RS codes

- $B = \{f \in \mathbb{F}_q[x] \mid \deg(f) \le d = (1 \epsilon)q\}; q = 2^s$ - Will set $\epsilon = 2^{-c}$ and let $c \to \infty$.
- $C = \{f : \mathbb{F}_q[x, y] \mid f|_{y=ax+b} \in B, \forall a, b\}$ - When is $x^i y^j \in C$?
 - Clearly if $i + j \le d$; But that is at most $\frac{q^2}{2}$ pairs.
 - Want $\approx \frac{q^2}{2}$ more such pairs.
 - When is every term of $x^i(ax + b)^j \mod(x^q x)$ of degree at most d?

Lucas's theorem & Rate

- Notation: $r \leq_2 j$, if $r = \sum_i r_i 2^i$ and $j = \sum_i j_i 2^i$ ($r_i, j_i \in \{0,1\}$) and $r_i \leq j_i$ for all i.
- Lucas's Theorem: $x^r \in \operatorname{supp}\left((ax+b)^j\right)$ iff $r \leq_2 j$.
- $\Rightarrow \operatorname{supp}(x^i(ax+b)^j) \ni x^{i+r} \operatorname{iff} r \leq_2 j$
- So given $i, j; \exists r \leq_2 j \text{ s.t. } i + r \pmod{q} > d$?

Binary addition etc. i $i_{k-1} = 0 \& i_k = 0$ $\& j_{k-1} = 0 \& j_k = 0$ $\Rightarrow u_k = 0$ С u = i + r $u_k = 0 \Rightarrow u \leq d$ msb lsb $\Pr_{i,j}[i_{\{k-1\}}...j_k \neq 0000] \le 15/16$ $\Pr_{i,i}[i+r \pmod{q} > d] \le \left(\frac{15}{16}\right)^{\overline{2}} \to 0 \text{ as } c \to \infty$

Other lifted codes

• Best LCC with O(1) locality.

$$-B = \{f \colon \mathbb{F}_{2^s} \to \mathbb{F}_2 \mid \sum_a f(a) = 0\};\$$

$$-s = \log_2 \ell = 0(1)$$

$$-C = \operatorname{Lift}_m(B);$$

$$-n = 2^{sm}; \ell\text{-LCC}; \dim(C) = (\log n)^{\ell}$$

• Alternate codes for BGHMRS construction:

$$-B = \left\{ f: \mathbb{F}_{4}^{m-\log 1/\epsilon} \to \mathbb{F}_{2} \middle| \sum_{a} f(a) = 0 \right\}$$
$$-C = \text{Lift}_{m}(B);$$
$$-\ell = \epsilon n; \dim(C) = n - \text{polylog}(n)$$

Nikodym Sets

- $N \subseteq \mathbb{F}_{q}^{m}$ is a Nikodym set if it almost contains a line through every point:
- ∀a ∈ \mathbb{F}_q^m , ∃ b ∈ \mathbb{F}_q^m s.t. {a + tb |t ∈ \mathbb{F}_q } ⊆ N ∪ {a}
 Similar to Kakeya Set (which contain line in every direction). $- \forall b \in \mathbb{F}_q^m, \exists a \in \mathbb{F}_q^m \text{ s.t. } \{a + tb \mid t \in \mathbb{F}_q\} \subseteq K$

• [Dvir], [DKSS]: $|K|, |N| \ge \left(\frac{q}{2}\right)^{m}$

Proof ("Polynomial Method")

- Find low-degree poly $P \neq 0$ s.t. $P(b) = 0, \forall b \in N$.
- $\deg(P) < q 1$ provided $|N| < \binom{m+q-2}{m}$.
- But now $P|_{L_a} = 0$, \forall Nikodym lines $L_a \Rightarrow P(a) = 0 \forall a$, contradicting $P \neq 0$.
- Conclude $|N| \ge {\binom{m+q-2}{m}} \approx \frac{q^m}{m!}$.
- Multiplicities, more work, yields $|N| \ge \left(\frac{q}{2}\right)^m$.
- But what do we really need from *P*?
 - P comes from a large dimensional vector space.
 - $-P|_L$ is low-degree!
 - Using P from lifted code yields $|N| \ge (1 o(1))q^m$ (provided q of small characteristic).

Conclusions

- Lifted codes seem to extend "low-degree polynomials" nicely:
 - Most locality features remain same.
 - Rest are open problems.
 - Lead to new codes.
- More generally: Affine-invariant codes worth exploring.
 - Can we improve on multiv. poly in polylog locality regime?

Thank You