Locally Decodable Codes from Lifting

Madhu Sudan
MSR

Joint work with Alan Guo (MIT) and Swastik Kopparty (Rutgers)
Error-Correcting Codes

• (Linear) Code $C \subseteq \mathbb{F}_q^n$.
 – $n \overset{\text{def}}{=} \text{block length}$
 – $k = \text{dim}(C) \overset{\text{def}}{=} \text{message length}$
 – $R(C) \overset{\text{def}}{=} k/n$: Rate of C (want as high as possible)
 – $\delta(C) \overset{\text{def}}{=} \min_{x \neq y \in C} \{\delta(x, y) \overset{\text{def}}{=} \Pr_i [x_i \neq y_i]\}$.

• Basic Algorithmic Tasks
 – Encoding: map message in \mathbb{F}_q^k to codeword.
 – Testing: Decide if $x \in C$
 – Correcting: If $x \notin C$, find nearest $y \in C$ to x. \\\3/25/2013 IAS - Lifted Codes 2 of 25
Locality in Algorithms

• “Sublinear” time algorithms:
 – Algorithms that run in time $o(\text{input})$, $o(\text{output})$.
 – Assume random access to input
 – Provide random access to output
 – Typically probabilistic; allowed to compute output on approximation to input.

• LTCs: Codes that have sublinear time testers.
 – Decide if $x \in C$ probabilistically.
 – Allowed to accept x if $\delta(x, C)$ small.

• LCCs: Codes that have sublinear time correctors.
 – If $\delta(x, C)$ is small, compute y_i, for $y \in C$ closest to x.

LTCs and LCCs: Formally

- \(\mathcal{C} \) is a \((\ell, \epsilon)\)-LTC if there exists a tester that
 - Makes \(\ell(n) \) queries to \(x \).
 - Accepts \(x \in \mathcal{C} \) w.p. 1
 - Rejects \(x \) w.p. at least \(\epsilon \cdot \delta(x, \mathcal{C}) \).

- \(\mathcal{C} \) is a \((\ell, \epsilon)\)-LCC if there exists a decoder \(D \) s.t.
 - Given oracle access \(x \) close to \(y \in \mathcal{C} \), and \(i \)
 - Decoder makes \(\ell(n) \) queries to \(x \).
 - Decoder \(D^x(i) \) usually outputs \(y_i \).

 \[\Pr_{i}[D^x(i) \neq y_i] \leq \delta(x, y)/\epsilon \]

- Often: ignore \(\epsilon \) and focus on \(\ell \)
Example: Multivariate Polynomials

- Message = multivariate polynomial; encoding = evaluations everywhere.
 - \(\text{RM}[m, d, q] \overset{\text{def}}{=} \{ \langle f(\alpha) \rangle_{\alpha \in \mathbb{F}_q^m} \mid f \in \mathbb{F}_q[x_1, \ldots, x_m], \deg(f) \leq d \} \)

- Locality?
 - Restrictions of low-degree polynomials to lines yield low-degree (univariate) polynomials.
 - Random lines sample \(\mathbb{F}_q^m \) uniformly (pairwise independently).
LDCs and LTCs from Polynomials

• Decoding \((d \leq q)\):
 – Problem: Given \(f \approx p, \alpha \in \mathbb{F}_q^m\), compute \(p(\alpha)\).
 – Pick random \(\beta\) and consider \(f|_L\) where \(L = \{\alpha + t \beta \mid t \in \mathbb{F}_q\}\) is a random line \(\exists \alpha\).
 – Find univ. poly \(h \approx f|_L\) and output \(h(\alpha)\)

• Testing \((d \leq q)\):
 – Verify \(\deg(f|_L) \leq d\).

• Parameters:
 – \(n = q^m; \ell = q = n^{\frac{1}{m}}; R(C) \approx \left(\frac{1}{m}\right)^m\)
Decoding Polynomials

- $d < q$
 - Correct more errors (possibly list-decode)
 - can correct $\approx 1 - \sqrt{d/q}$ fraction errors [STV].

- $d > q$
 - Distance of code $\delta \approx q^{-d/(q-1)}$
 - Decode by projecting to $\approx \frac{d}{q-1}$ dimensions. “decoding dimension”.
 - Locality $\approx 1/\delta$.
 - Lots of work to decode from $\approx \delta$ fraction errors [GKZ,G].
 - Open when $q = d = 3$ [Gopalan].
Testing Polynomials

• $d \ll q$:
 – Even slight advantage on test implies correlation with polynomial.[RS, AS]

• $d > q$:
 – Testing dimension $t = \frac{d}{q - \frac{q}{p}}$; where $q = p^s$;
 – Project to t dimensions and test.
 – $(q^t, \min\{\epsilon_q, q^{-2t}\})$-LTC.
Testing vs. Decoding dimensions

• Why is decoding dimension $d/(q - 1)$?
 – Every function on fewer variables is a degree d polynomial. So clearly need at least this many dimensions.

• Why is testing dimension $d/(q - q/p)$?
 – Consider $q = 2^s$ and $f = x^2 y^2$.
 – On line $y = ax + b$,

 $f = x^2 (ax + b)^2 = x^2 \left(a^2 x^2 + b^2 \right) = a^2 x + b^2 x^2$.

 – So $\deg(f) = q$, but f has degree $\leq \frac{q}{2}$ on every line!
 – In general if $q = p^s$ then powers of p pass through (...)
 – Aside: Using more than testing dimension has not paid dividend with one exception [RazSafra]
Other LTCs and LDCs

• Composition of codes yields better LTCs.
 – Reduces $\ell(\cdot)$ (to even 3) without too much loss in $R(C)$.
 – But till recently, $R(C) \leq \frac{1}{2}$

• LDCs
 – 2007+ [Yekhanin, Raghavendra, Efremenko] – great improvements for $\ell(n) = O(1); n = \text{superpoly}(k)$.
 – 2010 [KoppartySarafYekhanin] Multiplicity codes get $R(C) \to 1$ with $\ell(n) = n^\varepsilon$
 – For $\ell(n) = \log n$; multiv. Polys are still best known.
Today

• New Locally Correctible and Testable Codes from “Lifting”.
 – $R(C) \to 1; \ell(n) = n^\epsilon$ for arbitrary $\epsilon > 0$.
 – First “LCCs + LTCs” to achieve this.
 – Only the second “LCCs” with this property
 • After Multiplicity codes [KoppartySarafYekhanin]
The codes

- Alphabet: \mathbb{F}_q
- Coordinates: \mathbb{F}_q^m
- Parameter: degree d
- Message space:
 \[
 \{ f : \mathbb{F}_q^m \to \mathbb{F}_q \mid \deg(f|_L) \leq d, \forall \text{ lines } L \}\]
- Code: Evaluations of message on all of \mathbb{F}_q^m
- And oh ... $q = 2^s; d = (1 - \epsilon)q; m = O(1)$
Recall: Bad news about \mathbb{F}_{2^s}

- Functions that look like degree d polynomials on every line \neq degree $d m$-variate polynomials.

- But this is good news!
 - Message space includes all degree d polynomials.
 - And has more.
 - So rate is higher!
 - But does this make a quantitative difference?

- As we will see ... **YES!** Most of the dimension comes from the ``illegitimate’’ functions.
Generalizing: Lifted Codes

• Consider $B \subseteq \{ \mathbb{F}_Q^t \to \mathbb{F}_q \}$.

 – \mathbb{F}_Q extends \mathbb{F}_q

 – Preferably B invariant under affine transformations of \mathbb{F}_Q^t.

• Lifted code $C \overset{\text{def}}{=} \text{Lift}_m(B) \subseteq \{ \mathbb{F}_Q^m \to \mathbb{F}_q \}$

 – $C = \{ f \mid f|_A \in B, \forall t\text{-dim. affine subspaces } A \}$.

• Previous example:

 – $B = \{ f: \mathbb{F}_q \to \mathbb{F}_q \mid \deg(f) \leq d \}$
Properties of lifted codes

- Distance:
 \[\delta(C) \geq \delta(B) - Q^{-t} + Q^{-m} \approx \delta(B) \]

- Local Decodability:
 - Same decoding algorithm as for RM codes.
 - \(B \) is \((\ell, \epsilon)\)-LDC implies \(C \) is \((\ell, \Omega(\epsilon))\)-LDC.

- Local Testability?
Local Testability of lifted codes

• Local Testability:
 – Test: Pick A and verify $f|_A \in B$.
 – “Single-orbit characterization”: (Q^t, Q^{-2t})-LTC [KS]
 – (Better?) analysis for lifted tests: (Q^t, ϵ_Q)-LTC [HRS]
 (extends [BKSSZ, HSS])

• Musings:
 – Analyses not robust (test can’t accept if $f|_A \approx B$.)
 – Still: generalizes almost all known tests ... [Main exceptions – [ALMSS, PS, RS, AS]].
 – Key question: what is min K s.t. $f|_{A_1}, \ldots, f|_{A_K} \in B \Rightarrow$
 there exists an interpolator $g \in C$ s.t. $g|_{A_i} = f|_{A_i}$
Returning to (our) lifted codes

- Distance ✔
- Local Decodability ✔
- Local Testability ✔
- Rate?
 - No generic analysis; has to be done on case by case basis.
 - Just have to figure out which monomials are in C.
Rate of bivariate Lifted RS codes

- \(B = \{ f \in \mathbb{F}_q[x] \mid \deg(f) \leq d = (1 - \epsilon)q \}; \quad q = 2^s \)
 - Will set \(\epsilon = 2^{-c} \) and let \(c \to \infty \).

- \(C = \{ f : \mathbb{F}_q[x, y] \mid f|_{y=ax+b} \in B, \forall a, b \} \)
 - When is \(x^i y^j \in C \)?
 - Clearly if \(i + j \leq d \); But that is at most \(\frac{q^2}{2} \) pairs.
 - Want \(\approx \frac{q^2}{2} \) more such pairs.
 - When is every term of \(x^i (ax + b)^j \mod(x^q - x) \) of degree at most \(d \)?
Lucas’s theorem & Rate

• Notation: \(r \leq 2 \, j \), if \(r = \sum_i r_i 2^i \) and \(j = \sum_i j_i 2^i \) (\(r_i, j_i \in \{0,1\} \)) and \(r_i \leq j_i \) for all \(i \).

• Lucas’s Theorem: \(x^r \in \text{supp} \left((ax + b)^j \right) \) iff \(r \leq 2 \, j \).

• \(\Rightarrow \text{supp} \left(x^i(ax + b)^j \right) \exists \, x^{i+r} \) iff \(r \leq 2 \, j \)

• So given \(i, j; \exists r \leq 2 \, j \) s. t. \(i + r \pmod{q} > d \)?
Binary addition etc.

\[
i = \begin{array}{cccccccc}
\text{lsb} & \text{msb} \\
0 & 0 & \ldots & \ldots & 0 & 0
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{lsb} & \text{msb} \\
0 & 0 & \ldots & \ldots & 0 & 0
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{lsb} & \text{msb} \\
0 & 0 & \ldots & \ldots & 0 & 0
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{lsb} & \text{msb} \\
0 & 0 & \ldots & \ldots & 0 & 0
\end{array}
\]

$$i_{k-1} = 0 \& i_k = 0$$

$$\& j_{k-1} = 0 \& j_k = 0$$

$$\Rightarrow u_k = 0$$

\[
\begin{array}{cccccccc}
\text{lsb} & \text{msb} \\
0 & 0 & \ldots & \ldots & 0 & 0
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{lsb} & \text{msb} \\
0 & 0 & \ldots & \ldots & 0 & 0
\end{array}
\]

$$u_k = 0 \Rightarrow u \leq d$$

\[
\Pr_{i,j} [i_{k-1} \ldots j_k \neq 0000] \leq \frac{15}{16}
\]

\[
\Pr_{i,j} [i + r \text{ (mod' } q) > d] \leq \left(\frac{15}{16}\right)^{2c} \rightarrow 0 \text{ as } c \rightarrow \infty
\]
Other lifted codes

- Best LCC with O(1) locality.
 - \(B = \{ f : \mathbb{F}_2^s \to \mathbb{F}_2 \mid \sum_a f(a) = 0 \} \);
 - \(s = \log_2 \ell = O(1) \)
 - \(C = \text{Lift}_m(B) \);
 - \(n = 2^{sm} ; \ell \text{-LCC} ; \dim(C) = (\log n)^\ell \)

- Alternate codes for BGHMRS construction:
 - \(B = \{ f : \mathbb{F}_4^{m - \log 1/\epsilon} \to \mathbb{F}_2 \mid \sum_a f(a) = 0 \} \)
 - \(C = \text{Lift}_m(B) \);
 - \(\ell = \epsilon n ; \dim(C) = n - \text{polylog}(n) \)
Nikodym Sets

• $N \subseteq \mathbb{F}_q^m$ is a Nikodym set if it almost contains a line through every point:
 \[- \forall a \in \mathbb{F}_q^m, \exists b \in \mathbb{F}_q^m \text{ s.t. } \{a + tb \mid t \in \mathbb{F}_q\} \subseteq N \cup \{a\}\]

• Similar to Kakeya Set (which contain line in every direction).
 \[- \forall b \in \mathbb{F}_q^m, \exists a \in \mathbb{F}_q^m \text{ s.t. } \{a + tb \mid t \in \mathbb{F}_q\} \subseteq K\]

• [Dvir], [DKSS]: $|K|, |N| \geq \left(\frac{q}{2}\right)^m$
Proof ("Polynomial Method")

• Find low-degree poly $P \neq 0$ s.t. $P(b) = 0, \forall b \in N$.
• $\deg(P) < q - 1$ provided $|N| < \binom{m + q - 2}{m}$.
• But now $P|_{L_a} = 0, \forall$ Nikodym lines $L_a \Rightarrow P(a) = 0 \forall a$, contradicting $P \neq 0$.
• Conclude $|N| \geq \binom{m + q - 2}{m} \approx \frac{q^m}{m!}$.
• Multiplicities, more work, yields $|N| \geq \left(\frac{q}{2}\right)^m$.
• But what do we really need from P?
 – P comes from a large dimensional vector space.
 – $P|_L$ is low-degree!
 – Using P from lifted code yields $|N| \geq (1 - o(1))q^m$
 (provided q of small characteristic).
Conclusions

• Lifted codes seem to extend “low-degree polynomials” nicely:
 – Most locality features remain same.
 – Rest are open problems.
 – Lead to new codes.

• More generally: Affine-invariant codes worth exploring.
 – Can we improve on multiv. poly in polylog locality regime?
Thank You