Locality in Codes and Lifting

Madhu Sudan
MSR

Joint work with Alan Guo (MIT) and Swastik Kopparty (Rutgers)
Error-Correcting Codes

• (Linear) Code $C \subseteq \mathbb{F}_q^n$.

 – $n \overset{\text{def}}{=} \text{block length}$
 – $k = \text{dim}(C) \overset{\text{def}}{=} \text{message length}$
 – $R(C) \overset{\text{def}}{=} k/n$: Rate of C (want as high as possible)
 – $\delta(C) \overset{\text{def}}{=} \min_{x \neq y \in C} \{\delta(u, v) \overset{\text{def}}{=} \Pr_i[u_i \neq v_i]\}$.

• Basic Algorithmic Tasks

 – Encoding: map message in \mathbb{F}_q^k to codeword.

 – Testing: Decide if $u \in C$

 – Correcting: If $u \notin C$, find nearest $v \in C$ to u.

Locality in Algorithms

• “Sublinear” time algorithms:
 – Algorithms that run in time $o(\text{input})$, $o(\text{output})$.
 – Assume random access to input
 – Provide random access to output
 – Typically probabilistic; allowed to compute output on approximation to input.

• LTCs: Codes that have sublinear time testers.
 – Decide if $u \in C$ probabilistically.
 – Allowed to accept u if $\delta(u, C)$ small.

• LCCs: Codes that have sublinear time correctors.
 – If $\delta(u, C)$ is small, compute v_i, for $v \in C$ closest to u.
LTCs and LCCs: Formally

• C is a (ℓ, ϵ)-LTC if there exists a tester that
 – Makes $\ell(n)$ queries to u.
 – Accepts $u \in C$ w.p. 1
 – Rejects u w.p. at least $\epsilon \cdot \delta(u, C)$.

• C is a (ℓ, ϵ)-LCC if there exists decoder D s.t.
 – Given oracle access u close to $v \in C$, and i
 – Decoder makes $\ell(n)$ queries to u.
 – Decoder $D^u(i)$ usually outputs v_i.

 • $\Pr_i[D^u(i) \neq v_i] \leq \delta(u, v) / \epsilon$

• Often: ignore ϵ and focus on ℓ
Example: Multivariate Polynomials

• Message = multivariate polynomial; Encoding = evaluations everywhere.
 – \(\text{RM}[m, d, q] \overset{\text{def}}{=} \{ \langle f(\alpha) \rangle_{\alpha \in \mathbb{F}_q^m} \mid f \in \mathbb{F}_q[x_1, \ldots, x_m], \deg(f) \leq d \} \)

• Locality?
 – Restrictions of low-degree polynomials to lines yield low-degree (univ.) polys.
 – Random lines sample \(\mathbb{F}_q^m \) uniformly (pairwise ind’ly)
LDCs and LTCs from Polynomials

• Decoding ($d \leq q$):
 – Problem: Given $f \approx p$, $\alpha \in \mathbb{F}_q^m$, compute $p(\alpha)$.
 – Pick random β and consider $f|_L$ where $L = \{\alpha + t \beta \mid t \in \mathbb{F}_q\}$ is a random line $\exists \alpha$.
 – Find univ. poly $h \approx f|_L$ and output $h(\alpha)$

• Testing ($d \leq q$):
 – Verify $\deg(f|_L) \leq d$.

• Parameters:
 – $n = q^m$; $\ell = q = n^\frac{1}{m}$; $R(C) \approx \left(\frac{1}{m}\right)^m$
Decoding Polynomials

• $d < q$
 – Correct more errors (possibly list-decode)
 – can correct $\approx 1 - \sqrt{d/q}$ fraction errors \cite{STV}.

• $d > q$
 – Distance of code $\delta \approx q^{-\frac{d}{q-1}}$
 – Decode by projecting to $\approx \frac{d}{q-1}$ dimensions. “decoding dimension”.
 – Locality $\approx 1/\delta$.
 – Lots of work to decode from $\approx \delta$ fraction errors \cite{GKZ,G}.
 – Open when $q = d = 3$ \cite{Gopalan}.
Testing Polynomials

• $d \ll q$:
 – Even slight advantage on test implies correlation with polynomial.\[RS, AS\]

• $d > q$:
 – Testing dimension $t = \frac{d}{q^{s/p}}$; where $q = p^s$;
 – Project to t dimensions and test.
 – $(q^t, \min\{\epsilon_q, q^{-2t}\})$-LTC.
Testing vs. Decoding dimensions

• Why is decoding dimension $d/(q - 1)$?
 – Every function on fewer variables is a degree d polynomial. So clearly need at least this many dimensions.

• Why is testing dimension $d/(q - q/p)$?
 – Consider $q = 2^s$, $d = \frac{q}{2}$ and $f = x^d y^d$.
 – On line $y = ax + b$,
 – $f = x^d (ax + b)^d = x^d (a^d x^d + b^d) = a^d x + b^d x^d$.
 – So $\deg(f) = q$, but f has degree $\leq d$ on every line!
 – In general if $q = p^s$ then powers of p pass through (...)
 – Aside: Using more than testing dimension has not paid dividend with one exception [RazSafra]
Other LTCs and LDCs

• Composition of codes yields better LTCs.
 – Reduces $\ell(\cdot)$ (to even 3) without too much loss in $R(C)$.
 – But till recently, $R(C) \leq \frac{1}{2}$

• LDCs
 – 2007+ [Yekhanin, Raghavendra, Efremenko] – great improvements for $\ell(n) = O(1); n = \text{superpoly}(k)$.
 – 2010 [KoppartySarafYekhanin] Multiplicity codes get $R(C) \rightarrow 1$ with $\ell(n) = n^\epsilon$
 – For $\ell(n) = \log n$; multiv. Polys are still best known.
Today

- New Locally Correctible and Testable Codes from “Lifting”.
 - $R(C) \to 1; \ell(n) = n^\epsilon$ for arbitrary $\epsilon > 0$.
 - First “LTCs” to achieve this?
 - Only the second “LCCs” with this property
 - After Multiplicity codes [KoppartySarafYekhanin]
The codes

- Alphabet: \mathbb{F}_q
- Coordinates: \mathbb{F}_q^m
- Parameter: degree d
- Message space:
 \[\{ f : \mathbb{F}_q^m \to \mathbb{F}_q \mid \deg(f|_L) \leq d, \forall \text{ lines } L \} \]
- Code: Evaluations of message on all of \mathbb{F}_q^m
- And oh ... $q = 2^s$; $d = (1 - \epsilon)q$; $m = O(1)$
Recall: Bad news about \mathbb{F}_2^s

- Functions that look like degree d polynomials on every line \neq degree $d m$-variate polynomials.
- But this is good news!
 - Message space includes all degree d polynomials.
 - And has more.
 - So rate is higher!
 - But does this make a quantitative difference?

- As we will see ... **YES!** Most of the dimension comes from the ``illegitimate” functions.
Generalizing: Lifted Codes

• Consider \(B \subseteq \{ F^t_Q \rightarrow F_q \} \).

 – \(F_Q \) extends \(F_q \)

 – Preferably \(B \) invariant under affine transformations of \(F^t_Q \).

• Lifted code \(C \mathrel{\overset{\text{def}}{=} \text{Lift}_m(B)} \subseteq \{ F^m_Q \rightarrow F_q \} \)

 – \(C = \{ f \mid f|_A \in B, \forall t\text{-dim. affine subspaces } A \} \).

• Previous example:

 – \(B = \{ f : F_q \rightarrow F_q \mid \deg(f) \leq d \} \)
Properties of lifted codes

• Distance:
 \[\delta(C) \geq \delta(B) - Q^{-t} + Q^{-m} \approx \delta(B) \]

• Local Decodability:
 – Same decoding algorithm as for RM codes.
 – \(B \) is \((\ell, \epsilon) \)-LDC implies \(C \) is \((\ell, \Omega(\epsilon)) \)-LDC.

• Local Testability?
Local Testability of lifted codes

• Local Testability:
 – Test: Pick \(A \) and verify \(f|_A \in B \).
 – “Single-orbit characterization”: \((Q^t, Q^{-2t})\)-LTC [KS]
 – (Better?) analysis for lifted tests: \((Q^t, \epsilon_Q)\)-LTC [HRS]
 (extends [BKSSZ,HSS])

• Musings:
 – Analyses not robust (test can’t accept if \(f|_A \approx B \).)
 – Still: generalizes almost all known tests ... [Main exceptions – [ALMSS,PS,RS,AS]].
 – Key question: what is \(K \) s.t. \(f|_{A_1}, ..., f|_{A_K} \in B \) \(\Rightarrow \)
 there exists an interpolator \(g \in C \) s.t. \(g|_{A_i} = f|_{A_i} \)
Returning to (our) lifted codes

- Distance ✓
- Local Decodability ✓
- Local Testability ✓
- Rate?
 - No generic analysis; has to be done on case by case basis.
 - Just have to figure out which monomials are in \(C \).
Rate of bivariate Lifted RS codes

• \(B = \{ f \in \mathbb{F}_q[x] \mid \deg(f) \leq d = (1 - \epsilon)q \}; \quad q = 2^s \)
 – Will set \(\epsilon = 2^{-c} \) and let \(c \to \infty \).

• \(C = \{ f : \mathbb{F}_q[x, y] \mid f|_{y=ax+b} \in B, \forall a, b \} \)
 – When is \(x^i y^j \in C \)?
 – Clearly if \(i + j \leq d \); But that is at most \(\frac{q^2}{2} \) pairs.
 – Want \(\approx \frac{q^2}{2} \) more such pairs.
 – When is every term of \(x^i(ax + b)^j \mod(x^q - x) \)
 of degree at most \(d \)?
Lucas’s theorem & Rate

• Notation: \(r \leq_2 j \), if \(r = \sum_i r_i 2^i \) and \(j = \sum_i j_i 2^i \) (\(r_i, j_i \in \{0,1\} \)) and \(r_i \leq j_i \) for all \(i \).

• Lucas’s Theorem: \(x^r \in \text{supp}\left((ax + b)^j \right) \) iff \(r \leq_2 j \).

• \(\Rightarrow \text{supp}(x^i(ax + b)^j) \ni x^{i+r} \) iff \(r \leq_2 j \)

• So given \(i, j; \exists r \leq_2 j \) s. t. \(i + r \mod q > d \)?
Binary addition etc.

\[u = i + r \]

\[
\begin{array}{cccccc}
\text{lsb} & \text{msb} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

\[i_{k-1} = 0 \land i_k = 0 \land j_{k-1} = 0 \land j_k = 0 \implies u_k = 0 \]

\[u_k = 0 \implies u \leq d \]

\[
\Pr_{i,j}[i_{k-1} \ldots j_k \neq 0000] \leq \frac{15}{16} \]

\[
\Pr_{i,j}[i + r \ (\text{mod}'q) > d] \leq \left(\frac{15}{16}\right)^c \quad \text{as } c \to \infty
\]
Other lifted codes

- Best LCC with $O(1)$ locality.
 - $B = \{ f : \mathbb{F}_{2^s} \rightarrow \mathbb{F}_2 \ | \sum_a f(a) = 0 \}$
 - $s = \log_2 \ell = O(1)$
 - $C = \text{Lift}_m(B)$
 - $n = 2^{sm}; \ell$-LCC; $\dim(C) = (\log n)^\ell$

- Alternate codes for BGHMRS construction:
 - $B = \{ f : \mathbb{F}_4^{m - \log 1/\epsilon} \rightarrow \mathbb{F}_2 \ | \sum_a f(a) = 0 \}$
 - $C = \text{Lift}_m(B)$
 - $\ell = \epsilon n; \dim(C) = n - \text{polylog}(n)$
Nikodym Sets

- $N \subseteq \mathbb{F}_q^m$ is a Nikodym set if it almost contains a line through every point:
 - $\forall a \in \mathbb{F}_q^m, \exists b \in \mathbb{F}_q^m$ s.t. $\{a + tb \mid t \in \mathbb{F}_q\} \subseteq N \cup \{a\}$

- Similar to Kakeya Set (which contain line in every direction).
 - $\forall b \in \mathbb{F}_q^m, \exists a \in \mathbb{F}_q^m$ s.t. $\{a + tb \mid t \in \mathbb{F}_q\} \subseteq K$

- [Dvir], [DKSS]: $|K|, |N| \geq \left(\frac{q}{2}\right)^m$
Proof ("Polynomial Method")

- Find low-degree poly \(P \neq 0 \) s.t. \(P(b) = 0, \forall b \in N \).
- \(\deg(P) < q - 1 \) provided \(|N| < \binom{m+q-2}{m} \).
- But now \(P|_{L_a} = 0, \forall \) Nikodym lines \(L_a \Rightarrow P(a) = 0 \ \forall a \), contradicting \(P \neq 0 \).
- Conclude \(|N| \geq \binom{m+q-2}{m} \approx \frac{q^m}{m!} \).
- Multiplicities, more work, yields \(|N| \geq \left(\frac{q}{2} \right)^m \).
- But what do we really need from \(P \)?
 - \(P \) comes from a large dimensional vector space.
 - \(P|_L \) is low-degree!
 - Using \(P \) from lifted code yields \(|N| \geq (1 - o(1))q^m \) (provided \(q \) of small characteristic).
Conclusions

• Lifted codes seem to extend “low-degree polynomials” nicely:
 – Most locality features remain same.
 – Rest are open problems.
 – Lead to new codes.

• More generally: Affine-invariant codes worth exploring.
 – Can we improve on multiv. poly in polylog locality regime?
Thank You