Communication Amid Uncertainty

Madhu Sudan
Microsoft Research

Based on
- Goldreich, Juba, S. (JACM 2011)
- Juba, Kalai, Khanna, S. (ITCS 2011)
- Haramaty, S. (ITCS 2014)
- Canonne, Guruswami, Meka, S. (ITCS 2015)
- Leshno, S. (manuscript)
Communication vs. Computation

- Interdependent technologies: Neither can exist without other
- Technologies/Products/Commerce developed (mostly) independently.
 - Early products based on clean abstractions of the other.
 - Later versions added other capability as afterthought.
 - Today products ... deeply integrated.
- Deep theories:

Well separated ... and have stayed that way

Turing '36

Shannon '48
Consequences of the wall

- **Computing theory:**
 - Fundamental principle = Universality
 - You can program your computer to do whatever you want.
 - ⇒ Heterogeneity of devices

- **Communication theory:**
 - Centralized design (Encoder, Decoder, Compression, IPv4, TCP/IP).
 - You can NOT program your device!
 - ⇐ Homogeneity of devices

- **Contradiction! But does it matter?**
 - Yes!
Sample problems:

- Universal printing:
 - You are visiting a friend. You can use their Wifi network, but not their printer. Why?

- Projecting from your laptop:
 - Machines that learn to communicate, and learn to understand each other.

- Digital libraries:
 - Data that lives forever (communication across time), while devices change.
Essence of “semantics”: Uncertainty

- Shannon:
 - “The significant aspect is that the actual message is one selected from a set of possible messages”

- Essence of unreliability today:
 - Context: Determines set of possible messages.
 - dictionary, grammar, general knowledge
 - coding scheme, prior distribution, communication protocols ...
 - Context is HUGE; and not shared perfectly;
Modelling uncertainty

Uncertain Communication Model
Classical Shannon Model

New Class of Problems
New challenges
Needs more attention!
Hope

- Better understanding of existing mechanisms
 - In natural communication
 - In “ad-hoc” designs

- What problems are they solving?

- Better solutions?
 - Or at least understand how to measure the quality of a solution.
II: Uncertain Compression
Human-Human Communication

- Role of dictionary = ?
 - [Juba, Kalai, Khanna, S. 11]
- Dictionary: list of words representing message
 - words appear against multiple messages
 - multiple words per message.
- How to decide which word to use? Context!
 - Encoding: Given message, use shortest unambiguous word in current context.
 - Decoding: Given word, use most likely message in current context, (among plausible messages)
- Context = ???. Prob. distribution on messages
 \[P_i = \text{Prob} [\text{message} = M_i] \]
Human Communication - 2

- Good (Ideal?) dictionary
 - Should compress messages to entropy of context:
 \[H(P = \langle P_1, \ldots, P_N \rangle). \]

- Even better dictionary?
 - Should not assume context of sender/receiver identical!
 - Compression should work even if sender **uncertain** about receiver (or receivers’ context).

Theorem [JKKS]: If dictionary is “random” then compression achieves message length \(H(P) + \Delta \), if sender and receiver distributions are “\(\Delta \)-close”.

\[M_1 = w_{11}, w_{12}, \ldots \]
\[M_2 = w_{21}, w_{22}, \ldots \]
\[M_3 = w_{31}, w_{32}, \ldots \]
\[M_4 = w_{41}, w_{42}, \ldots \]

[Diagram of sender and receiver contexts with arrows indicating uncertainty.]
Implications

- Reflects tension between ambiguity resolution and compression.
 - Larger the gap in context (Δ), larger the encoding length.
- Coding scheme reflects human communication?
- “Shared randomness” debatable assumption:
 - Dictionaries do have more structure.
 - Deterministic communication? [Haramaty+S,14]
 - Randomness imperfectly shared? Next ...
III: Imperfectly Shared Randomness
Communication (Complexity)

- Compression (Shannon, Noiseless Channel)

 $x \sim P = (P_1, \ldots, P_n)$

- What will Bob do with x?
 - Often knowledge of x is overkill.
 - [Yao]’s model:
 - Bob has private information y.
 - Wants to know $f(x, y) \in \{0, 1\}$.
 - Can we get away with much less communication?

In general, model allows interaction. For this talk, only one way comm.
Brief history

- ∃ problems where Alice can get away with much fewer bits of communication.
 - Example: $\oplus (x, y) \triangleq \bigoplus_i (x_i \oplus y_i)$
 - But very few such deterministically.

- Enter Randomness:
 - Alice & Bob share random string r (ind. of x, y)
 - Many more problems; Example:
 - $\text{Eq}(x, y) = 1$ if $x = y$ and 0 otherwise
 - Deterministically: $\Theta(n)$
 - Randomized: $O(1)$

- Uncertainty-motivated question:
 - Does randomness have to be perfectly shared?
Results

- [Newman ‘90s]:
 \[CC \text{ without sharing} \leq CC \text{ with sharing} + \log n \]
- But additive cost of \(\log n \) may be too much.
 - Compression! Equality!!
- Model recently studied by [Bavarian et al.’14]
 - Equality: \(O(1) \) bit protocol w. imperfect sharing
- Our Results: [Canonne, Guruswami, Meka, S.’15]
 - Compression: \(O(H(P) + \Delta) \)
 - Generally: \(k \) bits with shared randomness
 \[\Rightarrow 2^k \text{ bits with imperfect sharing.} \]
 - \(k \to 2^k \) loss is necessary.
Some General Lessons

- Compression Protocol:
 - Adds “error-correction” to [JKKS] protocol.
 - Send shortest word that is far from words of other high probability messages.
 - Another natural protocol.

- General Protocol:
 - Much more “statistical”
 - Classical protocol for Equality:
 - Alice sends random coordinate of ECC(x)
 - New Protocol
 - ~ Alice send # 1’s in random subset of coordinates.
IV: Coordination
Communicate meaning?

- Ultimate goal:
 - Message \Rightarrow Instructions.
 - What is this dictionary?
 - Can it be learned by communication?
- At first glance:
 - Ambiguity can never be resolved by communication (even a theorem [JS’08]).
- Second look:
 - Needs more careful definitions.
 - Meaning = mix of communication + actions + incentives.
(Mis) Understanding?

- Uncertainty problem:
 - Sender/receiver disagree on meaning of bits

- Definition of Understanding?
 - Sender sends instructions; Receiver follows?
 - Errors undetectable (by receiver)
 - Not the right definition anyway:
 - Does receiver want to follow instructions
 - What does receiver gain by following instructions? Must have its own “Goal”/”Incentives”.

- [Goldreich, Juba, S. 2012]: Goal-oriented communication:
(Mis) Understanding?

- Uncertainty problem:
 - Sender/receiver disagree on meaning of bits

- Definition of Understanding?
 - Receiver has goals/incentives.

- [Goldreich, Juba, S. 2012]: Goal-oriented communication:
 - Define general communication problems (and goals)
 - Show that if
 - Sender can help receiver achieve goal (from any state)
 - Receiver can sense progress towards goal
 - then
 - Receiver can achieve goal.

- Functional definition of understanding.
Illustration: (Repeated) Coordination

- [Leshno, S.]
- Basic Coordination Game:
 - Alice and Bob simultaneously choose actions $\in \{0,1\}$
 - If both pick same action, both win.
 - If they pick opposite actions, both lose.
- Main challenge: Don’t know what the other person will choose when making our choice.
- Repeated version:
 - Play a sequence of games, using outcome of previous games to learn what the other player may do next.
 - Goal: Eventual perpetual coordination.
Our setting

- Repeated coordination game with uncertainty:
 - Bob’s perspective:
 - Knows his payoffs – 1 for coord.; 0 for not.
 - Does not know Alice’s payoffs (uncertainty):
 - May vary with round
 - But for every action of Alice, payoff does not decrease if Bob coordinates (compatibility).
 - Knows a set S_A of strategies she may employ ("reasonable behaviors").
 - Can he learn to coordinate eventually?
Coordination with Uncertainty

- Mixes essential ingredients:
 - Communication: Actions can be used to communicate (future actions).
 - Control: Communication (may) influence future actions.
 - Incentives:
 - Bob has incentive to coordinate.
 - Alice not averse.

- What do the general results say?
 - \(\exists \) Universal strategy \(U \) s.t.
 - \(\forall \) Alice s.t. \(\exists \) Bob who coordinates with Alice from any state.
 - \(U \) coordinates with Alice.
Lessons

- Coordination is possible:
 - Even in extreme settings where
 - Alice has almost no idea of Bob
 - Bob has almost no idea of Alice
 - Alice is trying to learn Bob
 - Bob is trying to learn Alice
 - Learning is slow ...
 - Need to incorporate beliefs to measure efficiency. [Juba, S. 2011]
 - Does process become more efficient when languages have structure? [Open]
Conclusions

- Context in communication:
 - White elephant in the room.
 - Huge, unmentionable, weighing us down.
 - Context usually imperfectly shared.
 - Uncertainty + Scale \Rightarrow New class of problems.
 - What are new “error-correcting” mechanisms?
 - Can be build reliability on top of unreliability?
Thank You!