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Goals of these talks 

 Part I 
 Introduce Property Testing (broadly interesting) 

 Philosophy behind “Invariance” 
 Introduce Algebraic Property Testing 

 Affine-Invariance 
 Part II 

 Structural results about Affine-Invariance 
 Testing & Affine-Invariance 
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Property Testing 

 Broadly: Test if massive data has some global 
property approximately, quickly. 
 E.g.: 16th/17th century astronomy: Do 

planetary positions have geometric structure? 
 Formalization: 

 Data = Function 𝑓𝑓:𝐷𝐷 → 𝑅𝑅 (𝐷𝐷,𝑅𝑅 finite) 
 Property = 𝑃𝑃 ⊆ 𝑓𝑓:𝐷𝐷 → 𝑅𝑅  
 Approximately? 𝛿𝛿(𝑓𝑓,𝑃𝑃) small, where 
𝛿𝛿 𝑓𝑓,𝑃𝑃 = min

𝑔𝑔∈𝑃𝑃
 { 𝛿𝛿 𝑓𝑓,𝑔𝑔 ≝ Pr

𝑥𝑥←𝐷𝐷
𝑓𝑓 𝑥𝑥 ≠ 𝑔𝑔 𝑥𝑥  } 

 Quickly? With ℓ ≪ |𝐷𝐷| queries into 𝑓𝑓 
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Ancient Example: Majority 

 Is Majority of Population (roughly) Blue/Red? 
 𝐷𝐷 = Population; 𝑅𝑅 = {Blue, Red} 
 𝑓𝑓 = Current preferences 

 𝑃𝑃 = 𝑔𝑔: Pr
𝑥𝑥
𝑔𝑔 𝑥𝑥 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ≥ 1

2
 

 Test: Pick 𝑥𝑥1, … , 𝑥𝑥ℓ ∈ 𝐷𝐷 uniformly independently. 

 Accept if more than 1
2
− 𝜖𝜖

2
ℓ vote Blue. 

 Theorem: 
 𝑓𝑓 ∈ 𝑃𝑃 ⇒ Accept w.p. ≥ 1 − exp −𝜖𝜖2ℓ  
 𝛿𝛿 𝑓𝑓,𝑃𝑃 ≥ 𝜖𝜖 ⇒ Accept w.p. ≤ exp −𝜖𝜖2ℓ  

 Emphasis: ℓ independent of |𝐷𝐷|; Error acceptable 
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Less Ancient Example: Linearity 

 Is 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ≈ ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖  for some 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 
 Abstraction: 𝐷𝐷 = 𝐺𝐺,𝑅𝑅 = 𝐻𝐻; 𝐺𝐺,𝐻𝐻 finite groups 

𝑃𝑃 =  𝜙𝜙:𝐺𝐺 → 𝐻𝐻  ∀𝑥𝑥,𝑦𝑦 𝜙𝜙 𝑥𝑥 + 𝑦𝑦 = 𝜙𝜙 𝑥𝑥 + 𝜙𝜙(𝑦𝑦)}  
 Test: Pick 𝑥𝑥,𝑦𝑦 ∈ 𝐺𝐺 uniformly & independently 

 Accept if 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓(𝑦𝑦) 
 Analysis [Blum,Luby,Rubinfeld ’90]: 

 𝑓𝑓 ∈ 𝑃𝑃 ⇒ Accept w.p. 1 (by definition) 

 𝛿𝛿 𝑓𝑓,𝑃𝑃 ≥ 𝛿𝛿 ⇒ Reject w.p. ≥  2
9

 𝛿𝛿 
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Non-triviality? 

 Example: 
 𝑛𝑛 = 3𝑡𝑡;  𝐺𝐺 = ℤ3𝑛𝑛; 𝐻𝐻 = ℤ𝑛𝑛 ; 𝑃𝑃 =  {𝑥𝑥 ↦ 𝑎𝑎𝑥𝑥 mod 𝑛𝑛 } ; 

 Consider 𝑓𝑓 𝑥𝑥 = 𝑥𝑥
3

 

 𝛿𝛿 𝑓𝑓,𝑃𝑃 = 1 − 1
𝑛𝑛

  

 Pr 𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴𝑎𝑎𝑛𝑛𝐴𝐴𝐵𝐵 = 7
9
 (Reject iff 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 3 = 𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚 3 ∈ {+1,−1}) 

 Reason for non-triviality: 
 Gap between  

 “f usually satisfies P” and  
 “f usually equals g which always satisfies P” 

 Gap invisible in “Polling”; gaping in “linearity” 
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Example 3: Low-degree testing 

 Is 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ≈ 𝑔𝑔 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚  with deg 𝑔𝑔 ≤ 𝑚𝑚? 
 𝐷𝐷 = 𝔽𝔽𝑞𝑞𝑚𝑚 ;𝑅𝑅 = 𝔽𝔽𝑞𝑞 
 Test: Is deg 𝑓𝑓|𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙 ≤ 𝑚𝑚? 

 (More generally: Is deg 𝑓𝑓|𝐴𝐴 ≤ 𝑚𝑚 for affine 
subspace 𝐴𝐴?)  

 Locality ℓ = 𝑞𝑞 vs. 𝐷𝐷 = 𝑞𝑞𝑚𝑚 
 (Example) Analyses: 
  ∃𝛼𝛼 > 0 s. t.∀ 𝑚𝑚, 𝑞𝑞,𝑚𝑚 ≤ 𝑞𝑞

2
, Pr
𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙

𝑅𝑅𝐵𝐵𝑅𝑅𝐵𝐵𝐴𝐴𝐴𝐴𝑅𝑅𝑛𝑛𝑔𝑔 𝑓𝑓 ≥ 𝛼𝛼 ⋅ 𝛿𝛿(𝑓𝑓,𝑃𝑃𝑑𝑑) 

 Robust version: 
  ∃ 𝛽𝛽 > 0 s. t.∀𝑚𝑚, 𝑞𝑞,𝑚𝑚 ≤ 𝑞𝑞

2
,𝔼𝔼𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙 𝛿𝛿(𝑓𝑓|𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙 ,𝑃𝑃𝑑𝑑) ≥ 𝛽𝛽 ⋅ 𝛿𝛿(𝑓𝑓,𝑃𝑃𝑑𝑑) 
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Aside: Importance of Low-degree Testing 

 Central element in PCPs (Probabilistically Checkable Proofs). 
 Till [Dinur’06] – no proof without (robust) low-degree 

testing. 
 Since: Best proofs (smallest, tightest parameters etc.) 

rely on improvements to low-degree tests. 
 Connected to Gowers Norms: 

 [Viola-Wigderson’07]: [AKKLR]⇒Hardness Amplification 

 Yield Locally Testable Codes  
 Best in high-rate regime. 
 [BarakGopalanHåstadMekaRaghavendraSteurer’12]: 
                        [BKSSZ’11] ⇒ Small-set expanders. 
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History of Property Testing (slightly abbreviated) 
 [Blum,Luby,Rubinfeld – S’90] 

 Linearity + application to program testing  
 [Babai,Fortnow,Lund – F’90] 

 Multilinearity + application to PCPs (MIP). 
 [Rubinfeld+S.]  

 Low-degree testing + Definition 
 [Goldreich,Goldwasser,Ron] 

 Graph property testing + systematic study 
 Since then … many developments 

 More graph properties, statistical properties, 
matrix properties, properties of Boolean 
functions …  

 More algebraic properties 
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What is Property Testing? 
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Graphs + 
Regularity 

Statistics 
+ CLT Matrices  

+ Linear 
algebra 
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Invariance? 

 Property 𝑃𝑃 ⊆ 𝑓𝑓:𝐷𝐷 → 𝑅𝑅  
 

 Property 𝑃𝑃 invariant under 1-1 𝝅𝝅:𝑫𝑫 → 𝑫𝑫, if 
   𝑓𝑓 ∈ 𝑃𝑃 ⇒ 𝑓𝑓 ∘ 𝜋𝜋 ∈ 𝑃𝑃 
 Property 𝑃𝑃 invariant under group 𝐺𝐺 if  
                  ∀ 𝜋𝜋 ∈ 𝐺𝐺 ⇒ 𝑃𝑃 is invariant under 𝜋𝜋. 

 𝐺𝐺 is invariance class of 𝑃𝑃. 
 

 Main Observation: Different property tests 
unified/separated by invariance class. 
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Invariances (contd.) 

 Some examples: 
 Classical statistics: Invariant under all permutations 𝑆𝑆𝐷𝐷. 
 Graph properties: Invariant under vertex renaming. 
 Boolean properties: Invariant under variable renaming. 
 Matrix properties: Invariant under mult. by invertible matrix. 
 Algebraic Properties = ? 

 

 Some introspection: 
 Classical statistics only dealt with 𝑆𝑆𝐷𝐷 
 Different invariances ⇔ different techniques. 
 Invariance for algebra?  
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What is Property Testing? 
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Algebra=? 
𝑆𝑆𝑉𝑉𝑙𝑙𝑉𝑉𝑡𝑡𝑖𝑖𝑉𝑉𝑙𝑙𝑉𝑉 

𝑆𝑆𝑣𝑣𝑣𝑣𝑉𝑉𝑖𝑖𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑉𝑉 

𝑆𝑆𝐷𝐷𝑜𝑜𝑚𝑚𝑣𝑣𝑖𝑖𝑛𝑛 
? 
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Algebraic Property Testing 

 Property = “algebraic” 
 Linearity Property (esp. 𝐺𝐺 = 𝔽𝔽q𝑚𝑚;𝐻𝐻 = 𝔽𝔽𝑞𝑞) 
 Low-degree Property. 
 Is there anything else? What is the abstraction? 
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Abstracting algebraic properties 

 [Kaufman+S.’08] 
 Affine Invariance: 

 Range = Small Field 𝔽𝔽𝑞𝑞  
 Domain = Vector space over extension field 𝔽𝔽𝑞𝑞𝑛𝑛

𝑚𝑚  
 Property invariant under affine transformations 

of domain (𝑥𝑥 ↦ 𝐴𝐴 ⋅ 𝑥𝑥 + 𝑏𝑏) 
 

 Additional feature: Linearity of Properties:  
 Property = vector space over range. 
 Critical in use in Coding Theory/PCP. 
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Testing Linear Properties  

Algebraic Property = Code! (usually) 

Universe: 
{f:D → R} 

P 

Don’t care 
Must reject 

Must accept 
P 

R is a field F;  
P is linear! 
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Connection to Coding Theory 

 Algebraic properties lead to error-correcting codes 
 Low-degree polynomials can’t intersect often. 
 True for other classes of algebraic functions. 

 BCH codes, Dual BCH codes (same symmetries) 
 AG/Goppa codes (fewer symmetries) 

 
 Coding theoretic metrics – want Property with: 

 Large pairwise “distance” 
 Many members (“high rate”) 
 Small locality of tests. 
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Why Study Affine-Invariance 

 Unify known testability results? 
 [Kaufman+S’08]: Unified [BLR’90], [RS ‘92], [AKKLR ‘03], 

[JPRZ ‘04], [KR ‘04]. 
 [Haramaty+RonZewi+S’13]: extends [BKSSZ 10], [HSS ‘11] 
 [Guo+Haramaty+S’14]: strengthens robust low-degree tests 

[ALMSS’92,Raz-Safra’96] 

 What leads to testability? 
 Negative results: Counterexamples to AKKLR conjecture 
 Positive results: Restrictions within Affine-invariance. 

 New Codes and Implications: 
 Lifted codes 
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Rest of talk (including tomorrow) 

 AKKLR Conjecture 
 Motivation, Counterexample, Lessons 

 
 Lifted Codes 

 Intriguing generalization of polynomials! 
 

 Ideas behind analyses of local tests 
 Role of the tensor product 
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AKKLR Conjecture 

 [Alon,Kaufman,Krivelevich,Litsyn,Ron ‘03] 
 Extended low-degree testing to case of 𝑚𝑚 ≥ 𝑞𝑞. 
 Proof extended that of BLR. 
 Conjectured that testing should apply to 

symmetric codes with local constraints. 
 Symmetric = ? 

 2-transitivity supports local “decoding” 
 Constraints = ? 
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Constraints, Characterization, Testing… 

December 29-30, 2015 

 Testing ⇒ Constraints 
 Example: Can not test degree 𝑚𝑚 polynomials 

with locality ℓ ≤ 𝑚𝑚 + 1 
 No local constraints! 
 ∀𝑆𝑆 ⊆ 𝔽𝔽𝑞𝑞, 𝑆𝑆 ≤ 𝑚𝑚 + 1, 𝐴𝐴𝑆𝑆 𝑝𝑝 ≡ 𝑓𝑓𝑆𝑆 𝑓𝑓, where 𝐴𝐴 = 

random deg. 𝑚𝑚 poly, 𝑓𝑓 = random function. 
 Constraint= 𝑆𝑆,𝑉𝑉 :  𝑆𝑆 ⊆ 𝐷𝐷, 𝑆𝑆 ≤ ℓ;  𝑉𝑉 ⊆ ℎ: 𝑆𝑆 → 𝑅𝑅 . 

Is 𝑓𝑓 �
𝑆𝑆
∈ 𝑉𝑉? 

 Testing ⇒ Characterizations 
 Characterization= 𝐶𝐶1, … ,𝐶𝐶𝑀𝑀 ;𝐶𝐶𝑗𝑗=constraint. 

𝑓𝑓 ∈ 𝑃𝑃    ⇔    ∀𝑅𝑅,𝑓𝑓 satisfies 𝐶𝐶𝑗𝑗 
 IITB: Property Testing & Affine Invariance 21 
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Constraints/Characterizations suffice? 

 [Ben-Sasson,Harsha,Raskhodnikova ‘04]: No! 
even characterizations don’t. 

 AKKLR: Perhaps symmetry suffices? 
 Strong form: Constraint + 2-transitivity suffices 

 Does above imply characterization? 
 Weak form: Characterization + 2-transitivity … 

 Both forms false: 
 [Grigorescu,Kaufman,S’08]:  
    Constraint + 2-transitivity ⇏ Characterization 
 [Ben-Sasson,Maatouk,Shpilka,S’11]:  
    Characterization + 2-transitivity ⇏ Testing 
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Structure of Affine-Invariant Properties 

 𝑃𝑃 ⊆ 𝑔𝑔:𝔽𝔽𝑄𝑄𝑚𝑚 → 𝔽𝔽𝑞𝑞 ;𝑄𝑄 = 𝑞𝑞𝑛𝑛;  𝑃𝑃 linear, affine-invariant. 

 𝑇𝑇𝑇𝑇 𝑥𝑥 ≝ 𝑥𝑥 + 𝑥𝑥𝑞𝑞 + ⋯+ 𝑥𝑥𝑞𝑞𝑛𝑛−1. 
 ∃ 𝐷𝐷 = Deg 𝑃𝑃 ⊆  Monomials 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚   
         s.t. 𝑃𝑃 = 𝑇𝑇𝑇𝑇 ∑ 𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀∈𝐷𝐷  
 Closure properties of the degree set Deg(𝑃𝑃) : 

 𝑥𝑥1𝑖𝑖𝑥𝑥2
𝑗𝑗𝑀𝑀 ∈ Deg 𝑃𝑃 ⇒ 𝑥𝑥1

𝑖𝑖+𝑗𝑗𝑀𝑀 (mod 𝑥𝑥1
𝑄𝑄 − 𝑥𝑥1) ∈ Deg(𝑃𝑃); 

 𝑥𝑥1𝑖𝑖𝑀𝑀 ∈ Deg 𝑃𝑃 ⇒ 𝑥𝑥1
𝑞𝑞𝑖𝑖  𝑀𝑀 mod 𝑥𝑥1

𝑄𝑄 − 𝑥𝑥1 ∈ Deg(𝑃𝑃) 

 𝑥𝑥1𝑖𝑖𝑀𝑀 ∈ Deg(𝑃𝑃) & 𝑅𝑅 ≤𝑝𝑝 𝑅𝑅 ⇒ 𝑥𝑥1
𝑗𝑗𝑀𝑀, 𝑥𝑥1

𝑗𝑗𝑥𝑥2
𝑖𝑖−𝑗𝑗𝑀𝑀 ∈ Deg 𝑃𝑃  

  𝑅𝑅 ≤𝑝𝑝 𝑅𝑅 ⇔ 𝑅𝑅𝑡𝑡 ≤ 𝑅𝑅𝑡𝑡 ∀𝐴𝐴, 𝑅𝑅 = ∑ 𝑅𝑅𝑡𝑡𝐴𝐴𝑡𝑡 ; 𝑅𝑅 = ∑ 𝑅𝑅𝑡𝑡𝐴𝐴𝑡𝑡𝑡𝑡 ; 𝑞𝑞 = 𝐴𝐴𝑉𝑉  
 Any set closed wrt all three above is a degree set  
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Known Testable Properties 

 Focus on univariate properties 𝑃𝑃 ⊆ 𝑓𝑓:𝔽𝔽𝑞𝑞𝑛𝑛 → 𝔽𝔽𝑞𝑞  
 Basic locally testable univ. properties 

 Reed-Muller Deg(𝑅𝑅𝑀𝑀𝑤𝑤) = 𝑥𝑥𝑑𝑑  𝑚𝑚 = ∑ 𝑚𝑚𝑡𝑡𝐴𝐴𝑡𝑡 ;∑ 𝑚𝑚𝑡𝑡 ≤ 𝑤𝑤}𝑡𝑡𝑡𝑡  
           (locality ℓ ≤ 2𝑤𝑤+1) 

 Sparse: Deg 𝑃𝑃 ≤ 𝐴𝐴 ; locality ℓ ≤ ℓ 𝑡𝑡
𝑛𝑛

, 𝑞𝑞  

   [KaufmanLitsyn,GrigorescuKS,KLovett,BenSassonRonZewiS] 

 Operations: Let 𝑃𝑃1 be ℓ1-locally testable and 𝑃𝑃2 be 
ℓ2-locally testable; ∃ℓ = ℓ ℓ1, ℓ2, 𝑞𝑞  s.t. 
 𝑃𝑃1 ∩ 𝑃𝑃2, and 𝑃𝑃1 + 𝑃𝑃2 are ℓ-locally testable. 

[BGMatoukShpilkaS,GuoS]  
 … and one more operation (to come later) 
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Constraint + 2-transitivity ⇏ Characterization 

 Counterexample univariate wlog. 
 Idea: Remove basis elements from 𝑅𝑅𝑀𝑀2 so 

resulting property is not Reed-Muller or sparse, 
but satisfies closure. 

 Specifically Deg 𝑃𝑃 = 𝑥𝑥2𝑖𝑖+2𝑗𝑗| 𝑅𝑅 − 𝑅𝑅 ≤ 𝑛𝑛
3
∪ 𝑥𝑥2𝑖𝑖| 𝑅𝑅 ∪ 𝑥𝑥0  

 Thm: For 𝑃𝑃 as above, ℓ = Ω(𝑛𝑛) 
 Key Lemma:𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 ∈ 𝔽𝔽2𝑛𝑛 lin. ind. over 𝔽𝔽2,  

    ⇒  
𝛼𝛼12

1 ⋯ 𝛼𝛼𝑘𝑘2
1

⋮ ⋱ ⋮
𝛼𝛼12

𝑘𝑘 ⋯ 𝛼𝛼𝑘𝑘2
𝑘𝑘

 is non-singular  
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Towards Counterexample to weak form 

 Idea: Start with 𝑃𝑃1, … ,𝑃𝑃𝑘𝑘: ℓ-locally testable 
properties and let 𝑃𝑃 = ∩𝑖𝑖 𝑃𝑃𝑖𝑖 

 By construction 𝑃𝑃 is ℓ-locally characterized 
 Hope: locality of testing → ∞ as 𝑘𝑘 → ∞ 
 Unfortunately: 

 Sparse ∩ Anything = Sparse 
 RM ∩ RM = RM 
 (RM+Sparse) ∩ (RM+Sparse) = RM+Sparse 

 Need non “RM+Sparse” locally testable property. 
 Idea “lift” sparse properties to non-sparse ones! 
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Lifting 

 Base Code 𝐵𝐵 ⊆ 𝑏𝑏:𝔽𝔽𝑄𝑄 → 𝔽𝔽𝑞𝑞  affine-invariant 
 Lifted Code 𝐿𝐿𝑚𝑚(𝐵𝐵) = 𝑓𝑓:𝔽𝔽𝑄𝑄𝑚𝑚 → 𝔽𝔽𝑞𝑞  ∀𝐵𝐵𝑅𝑅𝑛𝑛𝐵𝐵 𝑓𝑓 𝑙𝑙𝑖𝑖𝑛𝑛𝑙𝑙 ∈ 𝐵𝐵 ; 
 𝐿𝐿𝑚𝑚(𝐵𝐵) ⊆ 𝑔𝑔:𝔽𝔽𝑄𝑄𝑚𝑚 → 𝔽𝔽𝑞𝑞 ↪ 𝑔𝑔:𝔽𝔽𝑄𝑄𝑚𝑚 → 𝔽𝔽𝑞𝑞  
 Lift of Sparse ≠ Sparse ; Lift of RM ≠ RM 
 [BMSS] Use lifts and intersections to show 

Characterization + 2-transitivity ⇏ Testing 
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Characterizations + 2-transitivity ⇏ Testable 

 𝑃𝑃 ⊆ 𝑓𝑓:𝔽𝔽2𝑛𝑛 → 𝔽𝔽2 ;  𝑛𝑛 = 𝑛𝑛1 ⋯𝑛𝑛𝑘𝑘 ;  𝑛𝑛𝑖𝑖 distinct primes 

 𝐵𝐵𝑖𝑖 ⊆ 𝑏𝑏:𝔽𝔽2𝑛𝑛𝑖𝑖 → 𝔽𝔽2 ; Deg 𝐵𝐵𝑖𝑖 = 𝑥𝑥2𝑗𝑗+2𝑗𝑗+1| 𝑅𝑅 ∪ 1, 𝑥𝑥, 𝑥𝑥2, 𝑥𝑥4 …   

 𝑃𝑃𝑖𝑖 = 𝐿𝐿𝑛𝑛
𝑛𝑛𝑖𝑖
𝐵𝐵𝑖𝑖 ⊆ 𝑓𝑓:𝔽𝔽2𝑛𝑛 → 𝔽𝔽2  ; 𝑃𝑃 = ∩𝑖𝑖 𝑃𝑃𝑖𝑖 

 Lemma: Test-locality 𝑃𝑃 → ∞ as 𝑘𝑘 → ∞ 
 Proof Steps: 

 Let 𝑃𝑃𝑖𝑖′ = ∩𝑗𝑗≤𝑖𝑖 𝑃𝑃𝑗𝑗; Understand Deg(𝑃𝑃𝑖𝑖′) 
 Find 𝑌𝑌𝑖𝑖 ⊆ Deg(𝑃𝑃𝑖𝑖′) with nice recursive structure. 
 Extract Matrices 𝑀𝑀𝑖𝑖 such that constraint lies in 

its kernel. 
 Prove ker 𝑀𝑀𝑖𝑖 ⊊ ker(𝑀𝑀𝑖𝑖−1) 
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Characterizing testability 

 Conjecture: To be 𝑂𝑂(1) locally testable, code 
must be obtained from 𝑅𝑅𝑀𝑀, 𝑆𝑆𝐴𝐴𝑎𝑎𝑇𝑇𝑆𝑆𝐵𝐵  by finite 
#composition steps using 𝐿𝐿𝑚𝑚, +,∩  

 Conjecture implies: 
∀𝐴𝐴 ∃𝑘𝑘 ∀ prime 𝑛𝑛, ∀𝑆𝑆 ⊆ 1, … ,𝑛𝑛 ,∀𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑘𝑘 ∈ 𝔽𝔽2𝑛𝑛  lin.  ind.  
the matrix 𝑀𝑀 = 𝛼𝛼𝑖𝑖2

𝑠𝑠

𝑖𝑖∈ 𝑘𝑘 ,𝑉𝑉∈𝑆𝑆  has rank ≥ 𝐴𝐴  

 Implication Open! 
 In general, few techniques to lower bound rank 

of matrix over finite fields 
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Next Lecture 

 Nice Lifted Properties 
 Surprising implications in incidence geometry 

 
 Testability of Affine-invariant codes 

 Some ideas  
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Thank You 
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