Property Testing and Affine Invariance Part I

Madhu Sudan Harvard University

December 29-30, 2015 IITB: Property Testing & Affine Invariance

Goals of these talks

Part I

- Introduce Property Testing (broadly interesting)
 Philosophy behind "Invariance"
- Introduce Algebraic Property Testing
 - Affine-Invariance
- Part II
 - Structural results about Affine-Invariance
 - Testing & Affine-Invariance

Property Testing

- Broadly: Test if massive data has some global property approximately, quickly.
 - E.g.: 16th/17th century astronomy: Do planetary positions have geometric structure?
- Formalization:
 - Data = Function $f: D \rightarrow R$ (D, R finite)
 - Property = $P \subseteq \{f: D \rightarrow R\}$
 - Approximately? $\delta(f, P)$ small, where $\delta(f, P) = \min_{g \in P} \{ \delta(f, g) \stackrel{\text{def}}{=} \Pr_{x \leftarrow D} [f(x) \neq g(x)] \}$
 - Quickly? With $\ell \ll |D|$ queries into f

Ancient Example: Majority

- Is Majority of Population (roughly) Blue/Red?
 - $D = Population; R = \{Blue, Red\}$
 - f = Current preferences

•
$$P = \left\{g: \Pr_x[g(x) = Blue] \ge \frac{1}{2}\right\}$$

- Test: Pick $x_1, ..., x_{\ell} \in D$ uniformly independently.
 - Accept if more than $\left(\frac{1}{2} \frac{\epsilon}{2}\right) \ell$ vote Blue.
 - Theorem:
 - $f \in P \Rightarrow \text{Accept w.p.} \geq 1 \exp(-\epsilon^2 \ell)$

 $\delta(f, P) \ge \epsilon \Rightarrow \text{Accept w.p.} \le \exp(-\epsilon^2 \ell)$

■ Emphasis: *l* independent of |*D*|; Error acceptable

Less Ancient Example: Linearity

- Is $f(x_1, ..., x_m) \approx \sum_i a_i x_i$ for some $a_1, ..., a_n$
- Abstraction: D = G, R = H; G, H finite groups $P = \{\phi: G \to H \mid \forall x, y \phi(x + y) = \phi(x) + \phi(y)\}$
- Test: Pick x, y ∈ G uniformly & independently
 Accept if f(x + y) = f(x) + f(y)
- Analysis [Blum,Luby,Rubinfeld '90]:
 - $f \in P \Rightarrow$ Accept w.p. 1 (by definition)
 - $\delta(f, P) \ge \delta \Rightarrow \text{Reject w.p.} \ge \frac{2}{9} \delta$ (non-trivial)

Non-triviality?

Example:

 $\bullet \ n = 3^t; \ G = \mathbb{Z}_{3n}; \ H = \mathbb{Z}_n \ ; \ P = \{x \mapsto ax \pmod{n}\};$

• Consider $f(x) = \left\lfloor \frac{x}{3} \right\rfloor$

$$\delta(f,P) = 1 - \frac{1}{n}$$

• $\Pr[Acceptance] = \frac{7}{9}$ (Reject iff x mod 3 = y mod 3 $\in \{+1, -1\}$)

Reason for non-triviality:

- Gap between
 - "f usually satisfies P" and

"f usually equals g which always satisfies P"

Gap invisible in "Polling"; gaping in "linearity"

Example 3: Low-degree testing

- Is $f(x_1, ..., x_m) \approx g(x_1, ..., x_m)$ with deg $(g) \leq d$?
- $D = \mathbb{F}_q^m$; $R = \mathbb{F}_q$
- Test: Is $\deg(f|_{line}) \le d$?
 - (More generally: Is $deg(f|_A) \le d$ for affine subspace A?)
 - Locality $\ell = q$ vs. $|D| = q^m$
- (Example) Analyses:
 - $\exists \alpha > 0 \text{ s.t. } \forall m, q, d \leq \frac{q}{2}, \Pr_{line}[Rejecting f] \geq \alpha \cdot \delta(f, P_d)$
- Robust version:

 $\exists \beta > 0 \text{ s.t. } \forall m, q, d \leq \frac{q}{2}, \mathbb{E}_{line}[\delta(f|_{line}, P_d)] \geq \beta \cdot \delta(f, P_d)$

Aside: Importance of Low-degree Testing

Central element in PCPs (Probabilistically Checkable Proofs).

- Till [Dinur'06] no proof without (robust) low-degree testing.
- Since: Best proofs (smallest, tightest parameters etc.) rely on improvements to low-degree tests.
- Connected to Gowers Norms:
 - [Viola-Wigderson'07]: [AKKLR]⇒Hardness Amplification
- Yield Locally Testable Codes
 - Best in high-rate regime.
 - BarakGopalanHåstadMekaRaghavendraSteurer'12]:

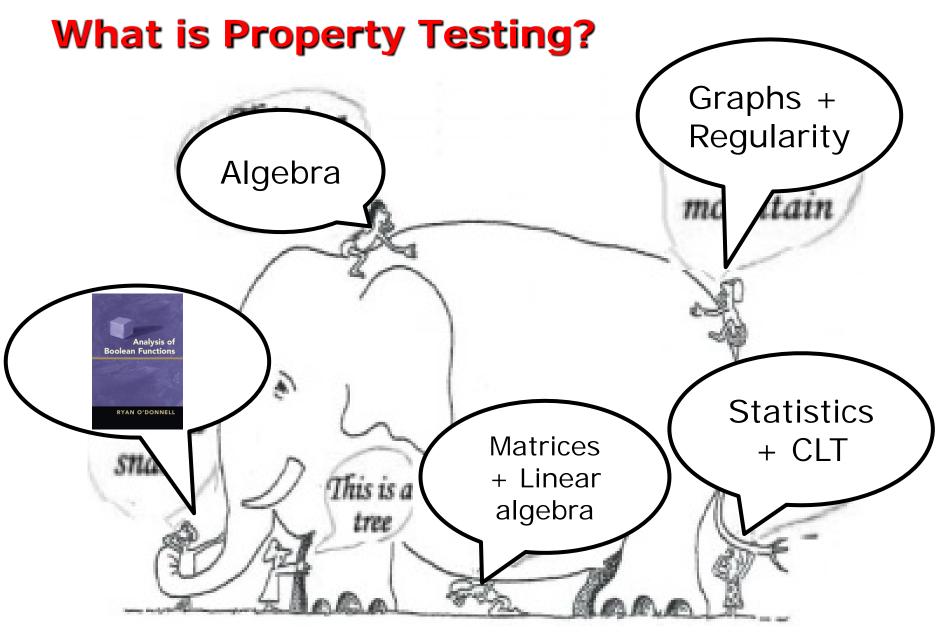
[BKSSZ'11] \Rightarrow Small-set expanders.

December 29-30, 2015

IITB: Property Testing & Affine Invariance

History of Property Testing (slightly abbreviated)

- [Blum,Luby,Rubinfeld S'90]
 - Linearity + application to program testing
- [Babai,Fortnow,Lund F'90]
 - Multilinearity + application to PCPs (MIP).
- [Rubinfeld+S.]
 - Low-degree testing + Definition
- [Goldreich,Goldwasser,Ron]
 - Graph property testing + systematic study
- Since then ... many developments
 - More graph properties, statistical properties, matrix properties, properties of Boolean functions ...
 - More algebraic properties



December 29-30, 2015

IITB: Property Testing & Affine Invariance

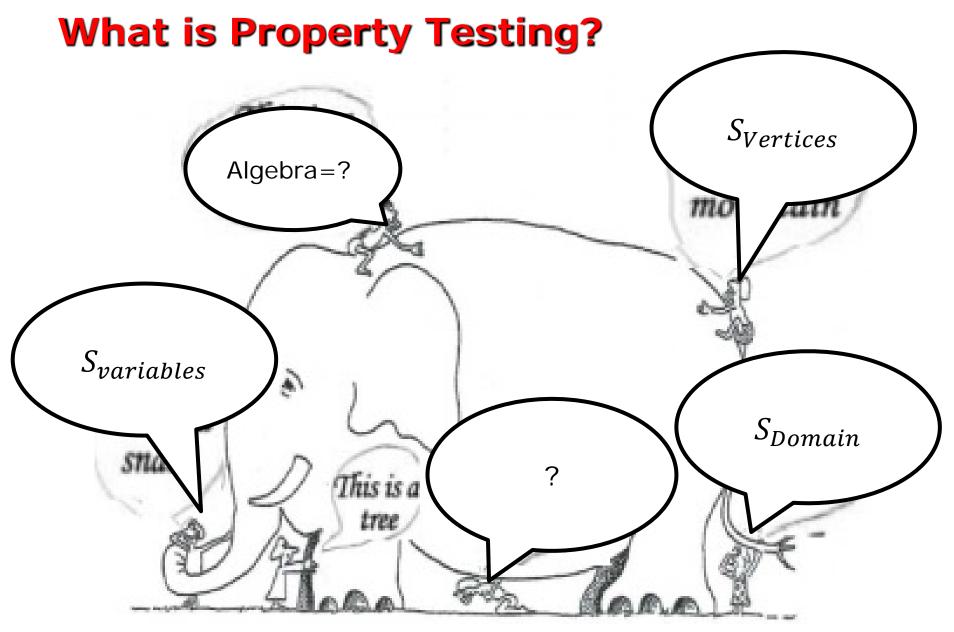
Invariance?

- Property $P \subseteq \{f : D \to R\}$
- Property *P* invariant under 1-1 π : $D \rightarrow D$, if $f \in P \Rightarrow f \circ \pi \in P$
- Property *P* invariant under group *G* if
 ∀π ∈ G ⇒ P is invariant under π.
 G is invariance class of *P*.
- Main Observation: Different property tests unified/separated by invariance class.

Invariances (contd.)

Some examples:

- Classical statistics: Invariant under all permutations S_D.
- Graph properties: Invariant under vertex renaming.
- Boolean properties: Invariant under variable renaming.
- Matrix properties: Invariant under mult. by invertible matrix.
- Algebraic Properties = ?
- Some introspection:
 - Classical statistics only dealt with S_D
 - Different invariances \Leftrightarrow different techniques.
 - Invariance for algebra?



December 29-30, 2015

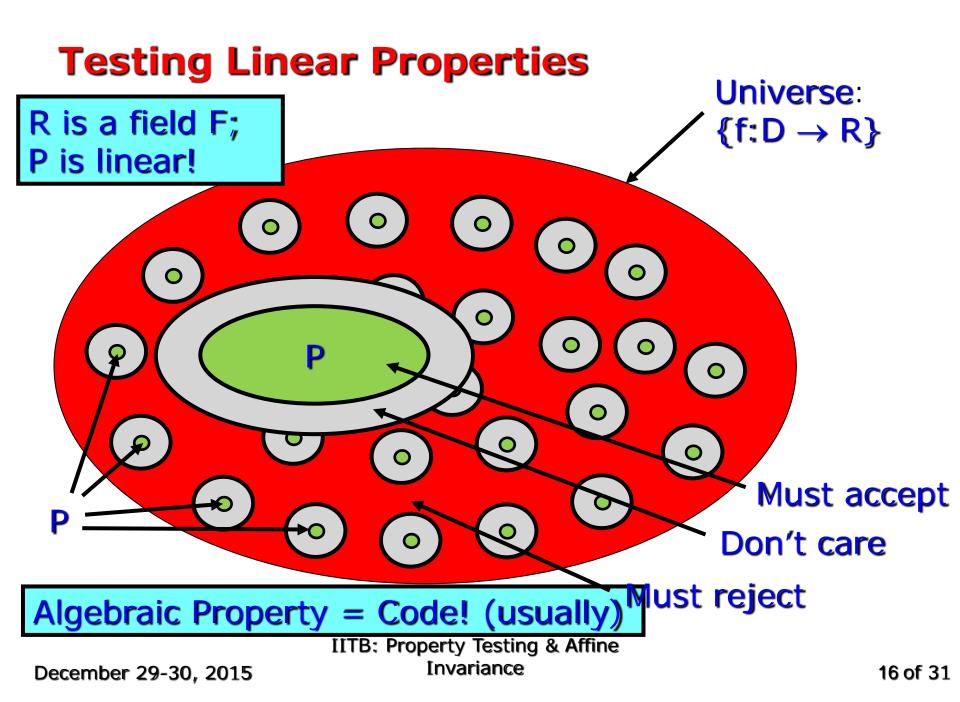
IITB: Property Testing & Affine Invariance

Algebraic Property Testing

- Property = "algebraic"
 - Linearity Property (esp. $G = \mathbb{F}_q^m$; $H = \mathbb{F}_q$)
 - Low-degree Property.
 - Is there anything else? What is the abstraction?

Abstracting algebraic properties

- [Kaufman+S.'08]
- Affine Invariance:
 - Range = Small Field \mathbb{F}_q
 - Domain = Vector space over extension field $\mathbb{F}_{q^n}^m$
 - Property invariant under <u>affine transformations</u> of domain $(x \mapsto A \cdot x + b)$
- Additional feature: Linearity of Properties:
 Property = vector space over range.
 - Critical in use in Coding Theory/PCP.



Connection to Coding Theory

Algebraic properties lead to error-correcting codes

- Low-degree polynomials can't intersect often.
- True for other classes of algebraic functions.
 BCH codes, Dual BCH codes (same symmetries)
 AG/Goppa codes (fewer symmetries)
- Coding theoretic metrics want Property with:
 - Large pairwise "distance"
 Classical
 Many members ("high rate")
 - <u>Small</u> locality of tests. ←

New!

Why Study Affine-Invariance

Unify known testability results?

- [Kaufman+S'08]: Unified [BLR'90], [RS '92], [AKKLR '03], [JPRZ '04], [KR '04].
- [Haramaty+RonZewi+S'13]: extends [BKSSZ 10], [HSS '11]
- [Guo+Haramaty+S'14]: strengthens robust low-degree tests [ALMSS'92,Raz-Safra'96]

What leads to testability?

- Negative results: Counterexamples to AKKLR conjecture
- Positive results: Restrictions within Affine-invariance.
- New Codes and Implications:
 - Lifted codes

Rest of talk (including tomorrow)

- AKKLR Conjecture
 - Motivation, Counterexample, Lessons
- Lifted Codes
 - Intriguing generalization of polynomials!
- Ideas behind analyses of local tests
 Role of the tensor product

AKKLR Conjecture

- [Alon,Kaufman,Krivelevich,Litsyn,Ron '03]
 - Extended low-degree testing to case of $d \ge q$.
 - Proof extended that of BLR.
 - Conjectured that testing should apply to symmetric codes with local constraints.
 - Symmetric = ? 2-transitive invariance class
 - 2-transitivity supports local "decoding"
 - Constraints = ?

Constraints, Characterization, Testing...

■ Testing ⇒ Constraints

• Example: Can not test degree d polynomials with locality $\ell \le d + 1$

No local constraints!

■ $\forall S \subseteq \mathbb{F}_q$, $|S| \le d + 1$, $\{p_S\}_p \equiv \{f_S\}_f$, where p = random deg. d poly, f = random function.

• Constraint=(S, V): $S \subseteq D, |S| \le \ell$; $V \subseteq \{h: S \to R\}$. Is $f \mid_{S} \in V$?

■ Testing ⇒ Characterizations

• Characterization = { $C_1, ..., C_M$ }; C_j = constraint. $f \in P \iff \forall j, f \text{ satisfies } C_j$

December 29-30, 2015

Constraints/Characterizations suffice?

- Ben-Sasson, Harsha, Raskhodnikova '04]: No! even characterizations don't.
- AKKLR: Perhaps symmetry suffices?
 - Strong form: Constraint + 2-transitivity suffices
 Does above imply characterization?
 - Weak form: Characterization + 2-transitivity ...
- Both forms false:
 - [Grigorescu,Kaufman,S'08]: Constraint + 2-transitivity ⇒ Characterization
 - [Ben-Sasson,Maatouk,Shpilka,S'11]: Characterization + 2-transitivity # Testing

Structure of Affine-Invariant Properties

- $P \subseteq \{g: \mathbb{F}_Q^m \to \mathbb{F}_q\}; Q = q^n; P$ linear, affine-invariant.
- $Tr(x) \stackrel{\text{def}}{=} x + x^q + \dots + x^{q^{n-1}}.$
- $\exists D = \text{Deg}(P) \subseteq \text{Monomials}(x_1, ..., x_m)$

s.t. $P = \{Tr(\sum_{M \in D} c_M M)\}$

- Closure properties of the degree set Deg(P) :
 - $x_1^i x_2^j M \in \text{Deg}(P) \Rightarrow x_1^{i+j} M \pmod{x_1^Q x_1} \in \text{Deg}(P);$
 - $x_1^i M \in \text{Deg}(P) \Rightarrow x_1^{qi} M (\text{mod } x_1^Q x_1) \in \text{Deg}(P)$
 - $x_1^i M \in \text{Deg}(P) \& j \leq_p i \Rightarrow x_1^j M, x_1^j x_2^{i-j} M \in \text{Deg}(P)$
 - $\quad j \leq_p i \Leftrightarrow j_t \leq i_t \,\forall t, \, j = \sum j_t p^t; i = \sum_t i_t p^t; q = p^s$

Any set closed wrt all three above is a degree set

Known Testable Properties

- Focus on univariate properties $P \subseteq \{f: \mathbb{F}_{q^n} \to \mathbb{F}_q\}$
- Basic locally testable univ. properties
 - Reed-Muller $\text{Deg}(RM_w) = \{x^d | d = \sum_t d_t p^t; \sum_t d_t \le w\}$ (locality $\ell \le 2^{w+1}$)
 - Sparse: $|\text{Deg}(P)| \le t$; locality $\ell \le \ell\left(\frac{t}{n}, q\right)$

[KaufmanLitsyn, GrigorescuKS, KLovett, BenSassonRonZewiS]

- Operations: Let P_1 be ℓ_1 -locally testable and P_2 be ℓ_2 -locally testable; $\exists \ell = \ell(\ell_1, \ell_2, q)$ s.t.
 - $P_1 \cap P_2$, and $P_1 + P_2$ are ℓ -locally testable. [BGMatoukShpilkaS,GuoS]
 - and one more operation (to come later)

Constraint + 2-transitivity \Rightarrow Characterization

- Counterexample univariate wlog.
- Idea: Remove basis elements from RM₂ so resulting property is not Reed-Muller or sparse, but satisfies closure.
- Specifically $\text{Deg}(P) = \{x^{2^i+2^j} | i j \le \frac{n}{3}\} \cup \{x^{2^i} | i\} \cup \{x^0\}$
- Thm: For P as above, $\ell = \Omega(n)$
- Key Lemma: $\alpha_1, ..., \alpha_k \in \mathbb{F}_{2^n}$ lin. ind. over \mathbb{F}_2 ,

$$\Rightarrow \begin{bmatrix} \alpha_1^{2^1} & \cdots & \alpha_k^{2^1} \\ \vdots & \ddots & \vdots \\ \alpha_1^{2^k} & \cdots & \alpha_k^{2^k} \end{bmatrix} \text{ is non-singular}$$

December 29-30, 2015 IITB: Property Testing & Affine Invariance

Towards Counterexample to weak form

- Idea: Start with $P_1, ..., P_k$: *ℓ*-locally testable properties and let $P = \bigcap_i P_i$
- By construction *P* is *ℓ*-locally characterized
- Hope: locality of testing $\rightarrow \infty$ as $k \rightarrow \infty$
- Unfortunately:
 - Sparse ∩ Anything = Sparse
 - $\blacksquare \mathsf{RM} \cap \mathsf{RM} = \mathsf{RM}$
 - (RM+Sparse) ∩ (RM+Sparse) = RM+Sparse
- Need non "RM+Sparse" locally testable property.
- Idea "lift" sparse properties to non-sparse ones!

Lifting

- Base Code $B \subseteq \{b: \mathbb{F}_Q \to \mathbb{F}_q\}$ affine-invariant
- Lifted Code $L_m(B) = \{f: \mathbb{F}_Q^m \to \mathbb{F}_q | \forall line f|_{line} \in B\};$
- $L_m(B) \subseteq \{g: \mathbb{F}_Q^m \to \mathbb{F}_q\} \hookrightarrow \{g: \mathbb{F}_Q^m \to \mathbb{F}_q\}$
- Lift of Sparse ≠ Sparse ; Lift of RM ≠ RM
- [BMSS] Use lifts and intersections to show Characterization + 2-transitivity # Testing

Characterizations + 2-transitivity ≠ Testable

- $P \subseteq \{f: \mathbb{F}_{2^n} \to \mathbb{F}_2\}; n = n_1 \cdots n_k; n_i \text{ distinct primes}$
- $B_i \subseteq \{b: \mathbb{F}_{2^{n_i}} \to \mathbb{F}_2\}; \text{Deg}(B_i) = \{x^{2^j + 2^{j+1}} | j\} \cup \{1, x, x^2, x^4 \dots\}$
- $P_i = L_{\frac{n}{n_i}}(B_i) \subseteq \{f \colon \mathbb{F}_{2^n} \to \mathbb{F}_2\} ; P = \bigcap_i P_i$
- Lemma: Test-locality(P) $\rightarrow \infty$ as $k \rightarrow \infty$
 - Proof Steps:
 - Let $P'_i = \bigcap_{j \le i} P_j$; Understand $Deg(P'_i)$
 - Find $Y_i \subseteq \text{Deg}(P'_i)$ with nice recursive structure.
 - Extract Matrices M_i such that constraint lies in its kernel.
 - Prove $ker(M_i) \subseteq ker(M_{i-1})$

Characterizing testability

- Conjecture: To be O(1) locally testable, code must be obtained from {RM, Sparse} by finite #composition steps using {L_m, +,∩}
- Conjecture implies:

 $\forall t \exists k \forall \text{ prime } n, \forall S \subseteq \{1, ..., n\}, \forall \alpha_1, \alpha_2, ..., \alpha_k \in \mathbb{F}_{2^n} \text{ lin. ind.}$ the matrix $M = \left[\alpha_i^{2^s}\right]_{i \in [k], s \in S} \text{ has rank} \geq t$

- Implication Open!
- In general, few techniques to lower bound rank of matrix over finite fields

Next Lecture

- Nice Lifted Properties
 - Surprising implications in incidence geometry
- Testability of Affine-invariant codes
 - Some ideas

Thank You

December 29-30, 2015

IITB: Property Testing & Affine Invariance

31 of 31