Property Testing and Affine Invariance

Part II

Madhu Sudan
Harvard University
Review of last lecture

- Property testing: Test global property with local inspection.
 - E.g., test if \(m \)-variate function over \(\mathbb{F}_q \) is deg. \(d \) poly.
 - \#coefficients = \(\exp(\min(m, d)) \)
 - query complexity (when \(d \leq \frac{q}{2} \)): \(\text{poly}(d) \)

- Affine-invariant Property: \(P \subseteq \{ f: \mathbb{F}_Q^m \to \mathbb{F}_q \}; \quad Q = q^n \)
 - \(P \) is \(\mathbb{F}_q \)-linear
 - \(P \) is invariant under affine maps \(\mathbb{F}_Q^m \to \mathbb{F}_Q^m \)
 - Generalize low-degree property; Testing results extend, strengthen; captures new properties.
Today

- Positive aspect of “New properties”
 - Lifted codes

- Testability of Lifted Codes
 - Result statements
 - Some proof ideas
(Recall) Lifted Codes

- Base Code \(B \subseteq \{ b : \mathbb{F}_Q^t \rightarrow \mathbb{F}_q \} \) affine-invariant
- \(m \)-dim Lift \(L_m(B) \equiv \{ f : \mathbb{F}_Q^m \rightarrow \mathbb{F}_q \} \)
- Last lecture: Used lifts to construct non-testable codes.
- Today: Use them to construct new, better, testable codes.
Coding Theoretic Objective

- Want codes of (Properties with)
 - High rate (many members)
 - High Distance (pairwise far)
 - Low Locality for Testing/Correcting
 (2-transitive and testable)
- Best known code (pre-2010) w. sublinear locality
 - Bivariate polynomials, w. deg. $k < q$.
 - $P \subseteq \{ f: \mathbb{F}_q^2 \to \mathbb{F}_q \}$;
 - “length”=dim. of ambient space = q^2
 - Rate $= \frac{\dim(P)}{\text{length}} = \frac{k^2}{2q^2} < \frac{1}{2}$; locality $\ell = q = \sqrt{\text{length}}$
Locality w. Rate $> \frac{1}{2}$?

- 2010 [Kopparty,Saraf,Yekhanin] “Multiplicity Codes”:
 - Locality = $(\text{length})^\varepsilon$; Rate $\to 1$
 - Not known to be testable!

- 2011 [Viderman] Tensor Product Codes:
 - Locality = $(\text{length})^\varepsilon$; Rate $\to 1$
 - Testable, but not symmetric 😞

- 2014 [Guo,Kopparty,S] Lifted Codes:
 - Locality = $(\text{length})^\varepsilon$; Rate $\to 1$
 - Testable + Symmetric!

- 2015 [Kopparty,Meir,RonZewi,Saraf]:
 - Locality = $(\text{length})^{o(1)}$; Rate $\to 1$
Lifted Reed-Solomon Codes

- **Base Code** \(B \subseteq \{ b : \mathbb{F}_q \to \mathbb{F}_q \mid \deg(b) \leq k = (1 - \delta)q \} \)
- **Lifted Code** \(L_m(B) \subseteq \{ f : \mathbb{F}_q^m \to \mathbb{F}_q \} \);
 - **Rate** = ?
 - **Distance** = ?
 - **Locality** = ? \(q \) (obvious)

- \(m \)-var. deg. \(k \) poly \(\subseteq L_m(B) \Rightarrow \text{Rate} \geq \frac{(1-m\delta)}{m!} ; \text{Dist} \leq \delta ; \)
- **Simple analysis:** \(\text{Dist} \geq \delta - \frac{1}{q} \)
- **Rate:** \(\forall \epsilon > 0, m, \ \exists \delta > 0 \text{ s.t. } \text{Rate} \geq 1 - \epsilon \)
Rate of bivariate Lifted RS codes

- \(B = \{ f \in \mathbb{F}_q[x] \mid \deg(f) \leq k = (1 - \delta)q \}; \ q = 2^s \)
 - Will set \(\delta = 2^{-c} \) and let \(c \to \infty \).
 - Note: \(m \leq k \iff \) one of its \(c \) MSBs is 0.
- \(L_2(B) = \{ f : \mathbb{F}_q[x,y] \mid f|_{y=ax+b} \in B, \forall a,b \} \)
 - When is \(x^i y^j \in C? \)
 - (Will need to look at binary rep’n of \(i, j \).)
Lucas’s theorem & Rate

- Recall: \(r \leq 2 \cdot j \), if \(r = \sum \eta_i 2^i \) and \(j = \sum j_i 2^i \) (\(\eta_i, j_i \in \{0,1\} \)) and \(\eta_i \leq j_i \) for all \(i \).

- Lucas’s Theorem: \(x^r \in \text{supp}\left((ax + b)^j\right) \) iff \(r \leq 2 \cdot j \).

\[
\Rightarrow \text{supp}(x^i(ax + b)^j) \ni x^{i+r} \text{ iff } r \leq 2 \cdot j
\]

- So given \(i, j \); \(\exists r \leq 2 \cdot j \) s. t. \(i + r \pmod q > k \)?

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\Pr_{i,j}[^*] \leq \left(\frac{15}{16}\right)^{\frac{c}{2}}
\]
Aside: Nikodym Sets

- \(N \subseteq \mathbb{F}_q^m \) is a Nikodym set if it almost contains a line through every point:
 - \(\forall a \in \mathbb{F}_q^m, \exists b \in \mathbb{F}_q^m \text{ s.t. } \{a + tb \mid t \in \mathbb{F}_q\} \subseteq N \cup \{a\} \)

- Similar to Kakeya Set (which contain line in every direction):
 - \(\forall b \in \mathbb{F}_q^m, \exists a \in \mathbb{F}_q^m \text{ s.t. } \{a + tb \mid t \in \mathbb{F}_q\} \subseteq K \)

- [Dvir], [DKSS]: \(|K|, |N| \geq \left(\frac{q}{2}\right)^m \)
Proof (“Polynomial Method”)

- Find low-degree poly \(F \neq 0 \) s.t. \(F(b) = 0, \forall b \in N \).
- \(\text{deg}(F) < q - 1 \) provided \(|N| < \binom{m+q-2}{m} \).
- But now \(F|_{L_a} = 0, \forall \) Nikodym lines \(L_a \Rightarrow F(a) = 0 \forall a \), contradicting \(F \neq 0 \).

Conclude \(|N| \geq \binom{m+q-2}{m} \approx \frac{q^m}{m!} \).

- Multiplicities, more work, yields \(|N| \geq \left(\frac{q}{2} \right)^m \).
- But what do we really need from \(F \)?
 - \(F \) comes from a large dimensional vector space.
 - \(F|_L \) is low-degree!
 - Using \(F \) from lifted code yields \(|N| \geq (1 - o(1))q^m \)
 (provided \(q \) of small characteristic).
Testing
Parameters of interest

- Property being tested: $P \subseteq \{ f : F_Q^m \rightarrow F_q \}$
- Locality of test ℓ
- Rejection ratio: $\epsilon \equiv \min_f \frac{\Pr[\text{Rejecting } f]}{\delta(f,P)}$
- Robustness: $\alpha \equiv \min_f \frac{\delta(f|_{\text{local}}, P|_{\text{local}})}{\delta(f,P)}$
- Ideally should compare $\frac{\ell}{\epsilon}$ (or $\frac{\ell}{\alpha}$)
Important Definition

- **ℓ-single orbit Property**: \(P \subseteq \{g : F^m_Q \rightarrow F_q\} \) is ℓ-single orbit if there exists an ℓ-local constraint \(C \) s.t.
 \[
 f \in P \iff \forall \text{ affine } A : F^m_Q \rightarrow F^m_Q, \quad f \circ A \text{ satisfies } C
 \]

- (Single constraint + its orbit characterize \(P \))

- Lifted Property is \(Q^t \)-single orbit.

- Most known algebraic properties had single orbit tests.
 - Exceptions, pre-2008: Sparse Properties
 - Post-2008: Sparse properties are single-orbit.
Testing Theorems

- **Thm 1 [KS08]:** ℓ-single orbit property is ℓ-locally testable with $\epsilon \approx \frac{1}{\ell^2}$

- **Thm 2 [HRS’13]:** $\forall Q \exists \epsilon$ s.t. $\forall t, \forall B \subseteq \{b: F^t_Q \rightarrow F_q\}$, $\forall m L_m(B)$ is Q^t-locally testable with soundness ϵ (Works for lifted codes. Soundness independent of t. But depends on Q)

- **Thm 3 [GHS’15]:** $\forall \delta \exists \alpha$ s.t. if $B \subseteq \{b: F^t_Q \rightarrow F_q\}$ is a code of distance δ then $L_m(B)$ is Q^{2t}-locally testable with robustness α (Generalizes low-degree testing. Stronger. Works even when $d \rightarrow q$)
\(\ell \text{-single-orbit} \implies \ell \text{-locally testable} \)

- \(P \subseteq \{ F_q^m \to F_q \} \) given by \((\alpha_1, \ldots, \alpha_\ell; V \leq F_q^\ell)\)
 - \(P = \{ f \mid \forall A, \langle f(A(\alpha_1)), \ldots, f(A(\alpha_\ell)) \rangle \in V \} \)

- "Auto-correction" based-proof:
 - Fix \(f \) s.t. \(\rho \equiv \Pr[\text{Rejecting } f] \) small
 - Define \(g \) from \(f \) locally
 - Prove \(g \) close to \(f \)
 - Prove \(g \) satisfies constraint \(\forall A \)

- Only possible
 \[g(x) = \arg\max_\beta \left\{ \Pr_{A : A(\alpha_1) = x} [\langle \beta, f(A(\alpha_2)), \ldots, f(A(\alpha_\ell)) \rangle \in V] \right\} \]
Analysis (contd.)

- \(\text{Vote}_A(x) = \beta \) s.t. \(\langle \beta, f(A(\alpha_2)), \ldots, f(A(\alpha_\ell)) \rangle \in V \)
- \(g(x) = \text{majority}_{A:A(\alpha_1)=x} \{\text{Vote}_A(x)\} \)
- Key Lemma:
 \[\forall x, \Pr_{A,B:A(\alpha_1)=B(\alpha_1)=x} [\text{Vote}_A(x) = \text{Vote}_B(x)] \geq 1 - 2\ell\rho \]
- \([\text{BLR, GLR, RS, AKLLR, KR, JPRZ}]\) Proofs: Build a miracle \(\ell \times \ell \) matrix \(M \):
 - Rows indexed by \(A_1 = A, A_2, \ldots, A_\ell \)
 - Columns by \(B_1 = B, B_2, \ldots, B_\ell \)
 - \(M_{ij} = A_i(\alpha_j) = B_j(\alpha_i) \ \forall i,j \)
 - Typical row/column random

Why does such a matrix exist?
Matrix Magic explained

- Wlog $C(\alpha_1), \ldots, C(\alpha_t)$ independent; rest determined when C random (affine).

\[
\begin{array}{|c|c|c|}
\hline
x & A(\alpha_2) \ldots A(\alpha_t) & \ldots & A(\alpha_\ell) \\
\hline
\vdots & \vdots & \ddots & \vdots \\
B(\alpha_2) & \vdots & & \vdots \\
B(\alpha_t) & & & \vdots \\
B(\alpha_\ell) & & & \vdots \\
\hline
\end{array}
\]

Random

Determined

Overdetermined?

No! Linear algebra!
Theorem 2: Context & Ideas

- Thm 2 [HRS’13]: \(\forall Q \exists \varepsilon \text{ s.t. } \forall t, \forall B \subseteq \{ b: F_Q^t \to F_q \}, \forall m L_m(B) \) is \(Q^t \)-locally testable with soundness \(\varepsilon \)

- Test: Obvious one:
 - Pick random \(t \)-dim subspace \(A \).
 - Accept iff \(f|_A \in B \)
 - Claim: \(\Pr_{A}[f|_A \notin B] \geq \varepsilon \cdot \delta(f, L_m(B)) \)

- [BKSSZ] Special case: \(Q = 2, B = \{ b| \sum_a b(a) = 0 \} \);
 - \(L_m(B) = m \text{-var deg } t - 1 \text{ poly} \)
Theorem 2 ($Q = q = 2$, contd.)

- Alternative view of test:
 - $f_a(x) \triangleq f(x + a) - f(a)$ “discrete derivative”
 - $\deg(f) < t \Rightarrow \deg(f_a) < t - 1$
 - $\ldots \Rightarrow \deg(f_{a_1, \ldots, a_t}) < 0 \Rightarrow f_{a_1, \ldots, a_t} = 0$
 - Rejection Prob. $\triangleq \rho(f) = \Pr_{a_1 \ldots a_t} [f_{a_1 \ldots a_t}] \neq 0$
 - $(1 - 2\rho(f))^{\frac{1}{2d}}$ special case of “Gowers norm”
- Strong “Inverse Conjecture” $\Rightarrow \rho(f) \rightarrow \frac{1}{2}$ as $\delta(f, L_m(B)) \rightarrow \frac{1}{2}$.
- Falsified by [LovettMeshulamSamorodnitsky],[GreenTao]:
 - $f = Sym_t(x_1 \ldots x_n); t = 2^s$;
 - $\delta(f, L_m(B)) = \frac{1}{2} - o_n(1); \rho(f) \leq \frac{1}{2} - 2^{-7}$
Theorem 2 (contd.)

- So $\rho(f) \to \frac{1}{2}$ as $\delta(f) \to \frac{1}{2}$; but is $\rho(f) > 0$?
- Prior to [BKSSZ]: $\rho(f) > 4^{-t} \cdot \delta(f)$
- [BKSSZ] Lemma: $\rho(f) \geq \min\{\epsilon, 2^t \cdot \delta(f)\}$
- Key ingredient in proof:
 - Suppose $\delta(f) > 2^{-t}$
 - On how many “hyperplanes” H can $\deg(f|_H) < t$?
Hyperplanes

\[\delta(f) > 2^{-t} \Rightarrow \# \left\{ H \text{ s.t. } \deg(f|_H) < t \right\} \leq ? \]

1. \(\exists H \text{ s.t. } \deg(f|_H) \geq t \): defn of lifting.
2. \(\Pr_{H}[\deg(f|_H) \geq t] \geq \frac{1}{q} \iff \deg_{x_i}(f) < q - 1. \)
3. … What we needed: \(\# \left\{ H \text{ s.t. } \deg(f|_H) < t \right\} \leq O(2^t) \)
General Lifted Properties

- Lemma: \(\forall Q \exists c \text{ s.t. if } \delta(f) \geq Q^{-t} \text{ then } \#\{H \text{ s.t. } f|_H \in L_{m-1}(B)\} \leq c \cdot Q^t \)

- Ingredients in proof:
 - \(q = 2 \): Simple symmetry of subspaces, linear algebra.
 - \(q = 3 \): Roth’s theorem ...
 - General \(q \): Density Hales-Jewett theorem
Theorem 3: Context

- Thm 3 [GHS’15]: \(\forall \delta \exists \alpha \text{ s.t. if } B \subseteq \{b: F_Q^t \to F_q\} \text{ is a code of distance } \delta \text{ then } L_m(B) \text{ is } Q^{2t}\text{-locally testable with robustness } \alpha \)

- Test – not most natural one!
 - Most natural: Inspect \(f|_A \) for \(t\)-dim \(A \)
 - Our test: Inspect \(f|_A \) for \(2t\)-dim \(A \)
 - Based on [Raz-Safra], [BenSassonS], ..., [Viderman]

- Need to show: \(\forall f \mathbb E_A[\delta(f|_A, B)] \geq \delta(f, L_m(B)) \)
- Not previously known even when \(t = 1 \) and \(B = \{b \mid \deg(b) \leq d\} \) with \(d = (1 - \epsilon)q \)
Robust Testing of Lifted Codes

- For simplicity $B \subseteq \{b: \mathbb{F}_q \to \mathbb{F}_q\}$ $(t = 1)$.
- General geometry + symmetry \Rightarrow Robust analysis with $m = 4 \Rightarrow$ All m

- How to analyze robustness of the test for constant m?
Tensors: Key to understanding Lifts

- Given \(F \subseteq \{ f : S \rightarrow F_q \} \) and \(G \subseteq \{ g : T \rightarrow F_q \} \),
 \[
 F \otimes G = \{ h : S \times T \rightarrow F_q \mid \forall x, y, h(\cdot, y) \in F \& h(x, \cdot) \in G \}
 \]

- \(F \otimes^m = F \otimes F \otimes \cdots \otimes F \)

- \(L_m(B) \subseteq B \otimes^m \); \(L_m(B) = \bigcap_T T(B \otimes^m) \) (affine map \(T \))

- \((m - 1)\)-dim test for \(B \otimes^m \): Fix coordinate at random and test if \(f(\cdots, x_i, \cdots) \in B \otimes^{m-1} \)

- [Viderman’13]: Test is \(\alpha_{\delta(B), m} \)-robust.

- Hope: Use \(L_m(B) = \bigcap_T T(B \otimes^m) \) to show that testing for random \(T(B \otimes^m) \) suffices;
 - \(\delta_A(f), \delta_B(f) \) small \(\neq \delta_{A \cap B}(f) \) small \(\otimes \)
Actual Analysis

- Say testing $L_4(B)$ by querying 2-d subspace.
- Let $P_a = \{f \mid f|_{\text{line}} \in B \text{ for all coordinate parallel lines, and lines in direction } a\}$
- $L_4(B) = \cap_a P_a$;
- P_a not a tensor code, but modification of tensor analysis works!
- $\cup_a P_a \subseteq B^\otimes 4$ is still an error-correcting code.
- So $\delta_{P_a}(f), \delta_{P_b}(f)$ small $\Rightarrow \delta_{P_a \cap P_b}(f)$ small!
- Putting things together \Rightarrow Theorem 3.
Wrapping up

Affine-Invariance

- Fruitful abstraction of low-degree property
- Many open questions
 - Characterize $O(1)$-locally testable properties.
 - Rich properties beyond lifting?
 - Beat polynomials for $\ell = \text{polylog}(\text{length})$

Invariance in Property Testing

- Pursue in other contexts?
- Other unifying generalizations?
Thank You