Reliable Meaningful Communication

Madhu Sudan
Microsoft, Cambridge, USA
Reliable Communication?

- Problem from the 1940s: Advent of digital age.

Communication media are always noisy
- But digital information less tolerant to noise!
Coding by Repetition

- Can repeat (every letter of) message to improve reliability:

 $\text{WWW EEE AAA RRR EEE NNN OOO WWW ...}$

 $\text{WXW EEA ARA SSR EEE NMN OOP WWW ...}$

- Calculations:

 - t repetitions \Rightarrow Prob. Single symbol corrupted $\approx 2^{-t}$
 - To transmit k symbols, choose $t \approx \log k$
 - Rate of transmission $= \frac{1}{\log k} \to 0$ as $k \to \infty$
 - Belief (pre-1940s): Rate of any scheme $\to 0$ as $k \to \infty$
Shannon’s Theory [1948]

- Sender “Encodes” before transmitting
- Receiver “Decodes” after receiving

- Encoder/Decoder arbitrary functions.
 \[E: \{0,1\}^k \rightarrow \{0,1\}^n \]
 \[D: \{0,1\}^n \rightarrow \{0,1\}^k \]

- Rate = \(\frac{k}{n} \);

- Requirement: \(m = D(E(m) + \text{error}) \) w. high prob.

- What are the best \(E, D \) (with highest Rate)?
Shannon’s Theorem

- If every bit is flipped with probability p
 - Rate $\rightarrow 1 - H(p)$ can be achieved.
 \[H(p) \triangleq p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1-p} \]
 - This is best possible.
- Examples:
 - $p = 0 \Rightarrow Rate = 1$
 - $p = \frac{1}{2} \Rightarrow Rate = 0$
 - Monotone decreasing for $p \in (0, \frac{1}{2})$
 - Positive rate for $p = 0.4999$; even if $k \rightarrow \infty$
Challenges post-Shannon

- Encoding/Decoding functions not “constructive”.
 - Shannon picked E at random, D brute force.
 - Consequence:
 - D takes time $\sim 2^k$ to compute (on a computer).
 - E takes time 2^{2^k} to find!
- Algorithmic challenge:
 - Find E, D more explicitly.
 - Both should take time $\sim k, k^2, k^3$... to compute
Explicit Codes: Reed-Solomon Code

- Messages = Coefficients of Polynomials.
 - Example:
 - Message = (100, 23, 45, 76)
 - Think of polynomial \(p(x) = 100 + 23x + 45x^2 + 76x^3 \)
 - Encoding: \((p(1), p(2), p(3), p(4), \ldots, p(n)) \)
 - First four values suffice, rest is redundancy!

- (Easy) Facts:
 - Any \(k \) values suffice where \(k = \) length of message.
 - Can handle \(n - k \) erasures or \((n - k)/2 \) errors.
 - Explicit encoding ✔
 - Efficient decoding? [Peterson 1960]
More Errors? List Decoding

- Why was \((n - k)/2 \) the limit for \#errors?
 - \(\frac{n}{2} \) is clearly a limit – right?
 - First half = evaluations of \(p_1 \)
 - Second half = evaluations of \(p_2 \)
 - What is the right message: \(p_1 \) or \(p_2 \)?

- \(\frac{n}{2} \) (even \(\frac{n-k}{2} \)) is the limit for “unique” answer.

- List-decoding: Generalized notion of decoding.
 - Report (small) list of possible messages.
 - Decoding “successful” if list contains the message polynomial.
Reed-Solomon List-Decoding Problem

- **Given:**
 - **Parameters:** n, k, t
 - **Points:** $(x_1, y_1), \ldots, (x_n, y_n)$ in the plane (finite field actually)

- **Find:**
 - All degree k poly’s that pass thru t of n points
 - i.e., all p s.t.
 - $\deg(p) < k$
 - $\#\{i \mid p(x_i) = y_i \} \geq t$
 - $t \geq \frac{(n+k)}{2}$: Answer unique; [Peterson 60] finds it.
 - [S. 96, Guruswami+S. ‘98]: $t \geq \sqrt{kn}$; small list
Decoding by example + picture [S’96]

Algorithm idea:

- Find algebraic explanation of all points.

\[x^4 - y^4 - x^2 + y^2 = 0 \]

- Stare at the solution 😊 (factor the polynomial)

\[(x + y)(x - y)(x^2 + y^2 - 1) \]
Decoding by example + picture [S’96]

\[n = 14; k = 1; t = 5 \]

Algorithm idea:

- Find algebraic explanation of all points.
 \[x^4 - y^4 - x^2 + y^2 = 0 \]

- Stare at the solution (factor the polynomial)
 \[(x + y)(x - y)(x^2 + y^2 - 1) \]
Decoding Algorithm

- **Fact:** There is always a degree $2\sqrt{n}$ polynomial thru n points
 - Can be found in polynomial time (solving linear system).

- [80s]: Polynomials can be factored in polynomial time [Grigoriev, Kaltofen, Lenstra]

- Leads to (simple, efficient) list-decoding correcting κ fraction errors for $\kappa \to 1$
Summary and conclusions

- (Many) errors can be dealt with:
 - Pre-Shannon: vanishing fraction of errors
 - Pre-list-decoding: small constant fraction
 - Post-list-decoding: overwhelming fraction

- Future challenges?
 - Communication can overcome errors introduced by channels.
 - Can communication overcome errors in misunderstanding between sender and receiver?
 - [Goldreich, Juba, S. ‘2011];
 - [Juba, Kalai, Khanna, S. ‘2011]
Thank You!