Imperfectly Shared Randomness in Communication

Madhu Sudan
Microsoft Research

Joint work with Clément Canonne (Columbia), Venkatesan Guruswami (CMU) and Raghu Meka (UCLA).
Communication Complexity

The model (with shared randomness)

\[f : (x, y) \mapsto \Sigma \]

\[R = $$$ \]

\[CC(f) = \# \text{ bits exchanged by best protocol} \]

\[f(x, y) \text{ w.p. } 2/3 \]
Communication Complexity: Motivation

- **Lower bounds:**
 - Circuit complexity, Streaming, Data Structures, extended formulations ...

- **Upper bounds?**
 - What is the right model for Communication (e.g., this talk)? - Shannon’48 or Yao’79?
 - If you wish to reproduce this talk ...
 - Shannon ‘48
 - If goal is for you to learn something, or if we expect to use interaction ...
 - Yao ’79!!
Natural (Contextual) communication

- Communication among humans:
 - Large context.
 - (Small) uncertainty about context.
 - Short communications.
- Can we use CC to study such communication?
 - What are example problems?
 - What are reliability mechanisms?
 - How do you leverage small uncertainty about large context?
- What are examples of problems with small communication complexity?
Aside: Easy CC Problems

- Equality testing:
 \[EQ(x, y) = 1 \iff x = y; \quad O \]

- Hamming distance:
 \[H_k(x, y) = 1 \iff \Delta(x, y) \leq k; \quad \]

- Small set intersection:
 \[\cap_k (x, y) = 1 \iff \text{wt}(x), \text{wt}(y); \quad \]
 \[CC(\cap_k) = O(k) \quad \text{[Håstad Wigderson]} \]

- Gap (Real) Inner Product:
 \[x, y \in \mathbb{R}^n; |x|_2, |y|_2 = 1; \]
 \[GIP_c(x, y) = 1 \iff \langle x, y \rangle > c; \quad \]

Thanks to Badih Ghazi and Pritish Kamath
Uncertainty in Communication

- Overarching question: Are there communication mechanisms that can overcome uncertainty?

- What is uncertainty? Some possible models
 - Bob wishes to compute f. Alice only has “approximate” knowledge of f.
 - Alice & Bob’s inputs are strongly correlated.

- This talk: Alice, Bob don’t share randomness perfectly; only approximately.
Rest of this talk

- Model: Imperfectly Shared Randomness

- Positive results: Coping with imperfectly shared randomness.

- Negative results: Analyzing weakness of imperfectly shared randomness.
Model: Imperfectly Shared Randomness

- Alice ← r; and Bob ← s where $(r, s_i) = \text{i.i.d. sequence of correlated pairs } (r_i, s_i)_i; \newline r_i, s_i \in \{-1, +1\}; \mathbb{E}[r_i] = \mathbb{E}[s_i] = 0; \mathbb{E}[r_i s_i] = \rho \geq 0 .$

- Notation:
 - $isr_\rho(f) = \text{cc of } f \text{ with } \rho\text{-correlated bits.}$
 - $cc(f): \text{Perfectly Shared Randomness cc. } = isr_1(f)$
 - $priv(f): \text{cc with PRIVate randomness } = isr_0(f)$

- Starting point: for Boolean functions f
 - $cc(f) \leq isr_\rho(f) \leq priv(f) \leq cc(f) + \log n$
 - What if $cc(f) \ll \log n? \ E.g. \ cc(f) = O(1)$

$03/04/2015 \hspace{10em} \text{TCS+: ISR in Communication}$
Results

- Model first studied by [Bavarian,Gavinsky,Ito’14] ("Independently and earlier").
 - Their focus: Simultaneous Communication; general models of correlation.
 - They show $isr(Equality) = O(1)$ (among other things)

- Our Results:
 - Generally: $cc(f) \leq k \Rightarrow isr(f) \leq 2^k$
 - Converse: $\exists f$ with $cc(f) \leq k \land isr(f) \geq 2^k$
Equality Testing (our proof)

- Key idea: Think inner products.
 - Encode \(x \mapsto X = E(x); y \mapsto Y = E(y); X,Y \in \{-1, +1\}^N \)
 - \(x = y \Rightarrow \langle X, Y \rangle = N \)
 - \(x \neq y \Rightarrow \langle X, Y \rangle \leq N/2 \)

- Estimating inner products:
 - Building on sketching protocols ...
 - Alice: Picks Gaussians \(G_1, \ldots, G_t \in \mathbb{R}^N \),
 - Sends \(i \in [t] \) maximizing \(\langle G_i, X \rangle \) to Bob.
 - Bob: Accepts iff \(\langle G'_i, Y \rangle \geq 0 \)
 - Analysis: \(O_\rho(1) \) bits suffice if \(G \approx_\rho G' \)

Gaussian Protocol
General One-Way Communication

- Idea: All communication \leq Inner Products
- (For now: Assume one-way-cc$(f) \leq k$)
 - For each random string R
 - Alice’s message $= i_R \in [2^k]$
 - Bob’s output $= f_R(i_R)$ where $f_R : [2^k] \rightarrow \{0,1\}$
 - W.p. $\geq \frac{2}{3}$ over R, $f_R(i_R)$ is the right answer.
General One-Way Communication

- For each random string R
 - Alice’s message $= i_R \in [2^k]$
 - Bob’s output $= f_R(i_R)$ where $f_R : [2^k] \to \{0,1\}$
 - W.p. $\geq \frac{2}{3}$, $f_R(i_R)$ is the right answer.

- Vector representation:
 - $i_R \mapsto x_R \in \{0,1\}^{2^k}$ (unit coordinate vector)
 - $f_R \mapsto y_R \in \{0,1\}^{2^k}$ (truth table of f_R).
 - $f_R(i_R) = \langle x_R, y_R \rangle$; Acc. Prob. $\propto \langle X, Y \rangle; X = (x_R)_R; Y = (y_R)_R$
 - Gaussian protocol estimates inner products of unit vectors to within $\pm \epsilon$ with $O_{\rho} \left(\frac{1}{\epsilon^2} \right)$ communication.
Two-way communication

- Still decided by inner products.

- Simple lemma:
 - \(\exists K_A^k, K_B^k \subseteq \mathbb{R}^{2^k} \) convex, that describe private coin k-bit comm. strategies for Alice, Bob s.t. accept prob. of \(\pi_A \in K_A^k, \pi_B \in K_B^k \) equals \(\langle \pi_A, \pi_B \rangle \)

- Putting things together:

Theorem: \(cc(f) \leq k \Rightarrow isr(f) \leq O_\rho(2^k) \)
Main Technical Result: Matching lower bound

Theorem: There exists a (promise) problem f s.t.
- $cc(f) \leq k$
- $isr_\rho(f) \geq \exp(k)$

The Problem:
- Gap Sparse Inner Product (G-Sparse-IP).
- Alice gets sparse $x \in \{0,1\}^n$; $wt(x) \approx 2^{-k} \cdot n$
- Bob gets $y \in \{0,1\}^n$
- Promise: $\langle x, y \rangle \geq (.9)2^{-k} \cdot n$ or $\langle x, y \rangle \leq (.6)2^{-k} \cdot n$.
- Decide which.
Protocol for G-Sparse-IP

- Note: Gaussian protocol takes $O(2^k)$ bits.
 - Need to get exponentially better.
- Idea: $x_i \neq 0 \Rightarrow y_i$ correlated with answer.
- Use (perfectly) shared randomness to find random index i s.t. $x_i \neq 0$.
- Shared randomness: i_1, i_2, i_3, \ldots uniform over $[n]$.
- Alice → Bob: smallest index j s.t. $x_{ij} \neq 0$.
- Bob: Accept if $y_{ij} = 1$
- Expect $j \approx 2^k$; $cc \leq k$.

G-Sparse-IP:

$x, y \in \{0, 1\}^n; \text{wt}(x) \approx 2^{-k} \cdot n$

Decide $\langle x, y \rangle \geq (.9) 2^{-k} \cdot n$

or $\langle x, y \rangle \leq (.6) 2^{-k} \cdot n$?
Towards a lower bound: Ruling out a natural approach

- Natural approach:
 - Alice and Bob use (many) correlated bits to agree perfectly on few random bits?
 - For G-Sparse-IP need $O(2^k \log n)$ random bits.

- Agreement Distillation Problem:
 - Alice & Bob exchange t bits; generate k random bits, with agreement probability γ.
 - Lower bound [Bogdanov, Mossel]:

 $$t \geq k - O\left(\log \frac{1}{\gamma}\right)$$

Towards Lower Bound

- Explaining two natural protocols:
 - Gaussian Inner Product Protocol:
 - Ignore sparsity and just estimate inner product.
 - Uses $\sim 2^{2k}$ bits. Need to prove it can’t be improved!

G-Sparse-IP:
$x, y \in \{0, 1\}^n; \text{wt}(x) \approx 2^{-k} \cdot n$
Decide $\langle x, y \rangle \geq (.9) 2^{-k} \cdot n$
or $\langle x, y \rangle \leq (.6) 2^{-k} \cdot n$?
Optimality of Gaussian Protocol

- **Problem:**
 - \((x, y) \leftarrow \mu^n: \mu = \mu_{YES} \text{ or } \mu_{NO} \text{ supported on } \mathbb{R} \times \mathbb{R}
 - \mu_{YES}: \epsilon\text{-correlated Gaussians}
 - \mu_{NO}: \text{uncorrelated Gaussians}

- **Lemma:** Separating \(\mu^n_{YES} \text{ vs. } \mu^n_{NO}\) requires \(\Omega(\epsilon^{-1})\) bits of communication.

- **Proof:** Reduction from Disjointness

- **Conclusion:** Can’t ignore sparsity!
Towards Lower Bound

- Explaining two natural protocols:
 - Gaussian Inner Product Protocol:
 - Ignore sparsity and just estimate inner product.
 - Uses $\sim 2^{2k}$ bits. Need to prove it can’t be improved!
 - Protocol with perfectly shared randomness:
 - Alice & Bob agree on coordinates to focus on:

 $$(i_1, i_2, ..., i_{2k}, ...)$$;
 - Either i_1 has high entropy (over choice of r, s)
 - Violates agreement distillation bound
 - Or has low-entropy:
 - Fix distributions of x, y s.t. $x_{i_1} \perp y_{i_1}$

G-Sparse-IP:

$x, y \in \{0, 1\}^n; \text{wt}(x) \approx 2^{-k} \cdot n$

Decide $\langle x, y \rangle \geq (.9) 2^{-k} \cdot n$

or $\langle x, y \rangle \leq (.6) 2^{-k} \cdot n$?
Aside: Distributional lower bounds

- **Challenge:**
 - Usual CC lower bounds are distributional.
 - \(cc(G\text{-Sparse-IP}) \leq k, \quad \forall \text{ inputs}. \)
 - \(\Rightarrow cc(G\text{-Sparse-IP}) \leq k, \quad \forall \text{ distributions}. \)
 - \(\Rightarrow det\text{-}cc(G\text{-Sparse-IP}) \leq k, \quad \forall \text{ distributions}. \)
- So usual approach can’t work ...
 - Need to fix strategy first and then “identify” a hard distribution for the strategy ...

\[G\text{-Sparse-IP}: \]
\[x, y \in \{0, 1\}^n; wt(x) \approx 2^{-k} \cdot n \]

Decide \(\langle x, y \rangle \geq (.9) 2^{-k} \cdot n \)

or \(\langle x, y \rangle \leq (.6) 2^{-k} \cdot n? \)
Towards lower bound

- Summary so far:
 - Symmetric strategy $\Rightarrow 2^k$ bits of comm.
 - Strategy asymmetric; $x_1, y_1 \ldots x_k, y_k$ have high influence \Rightarrow fix the distribution so these coordinates do not influence answer.
 - Strategy asymmetric; with random coordinate having high influence \Rightarrow violates agreement lower bound.

- Are these exhaustive? How to prove this?
 - Invariance Principle!!
 - [Mossel, O’Donnell, Oleskiewisz], [Mossel] ...
ISR lower bound for GSIP.

- One-way setting (for now)
- Strategies: Alice $f_r(x) \in [K]$; Bob $g_s(y) \in \{0,1\}^K$;
- Distributions:
 - If x_i, y_i have high influence on (f_r, g_s) w.h.p. over (r,s) then set $x_i = y_i = 0$. [i is BAD]
 - Else y_i correlated with x_i in YES case, and independent in NO case.
- Analysis:
 - $i \in BAD$ influential in both $f_r, g_s \Rightarrow$ No help.
 - $i \notin BAD$ influential ... \Rightarrow violates agreement lower bound.
 - No common influential variable $\Rightarrow x, y$ can be replaced by Gaussians $\Rightarrow 2^k$ bits needed.

G-Sparse-IP: $x, y \in \{0,1\}^n; \text{wt}(x) \approx 2^{-k} \cdot n$
Decide $\langle x, y \rangle \geq (.) 2^{-k} \cdot n$ or $\langle x, y \rangle \leq (.) 2^{-k} \cdot n?$

03/04/2015 TCS+: ISR in Communication
Invariance Principle + Challenges

- Informal Invariance Principle: f, g low-degree polynomials with no common influential variable
 \[\Rightarrow \operatorname{Exp}_{x,y}[f(x)g(y)] \approx \operatorname{Exp}_{x,y}[f(X)g(Y)] \]
 (caveat $f \approx f; g \approx g$)
 - where x, y Boolean n-wise product dist.
 - and X, Y Gaussian n-wise product dist

- Challenges [+ Solutions]:
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued
 - $g: \{0,1\}^n \to \{0,1\}^\ell$: [Truncate range to $[0,1]^\ell$]
 - $f: \{0,1\}^n \to [\ell]$: [???, [work with $\Delta(\ell)$]]
Invariance Principle + Challenges

- Informal Invariance Principle: \(f, g \) low-degree polynomials with no common influential variable
 \[\Rightarrow \text{Exp}_{x,y}[f(x)g(y)] \approx \text{Exp}_{X,Y}[f(X)g(Y)] \] (caveat \(f \approx f; g \approx g \))

- Challenges
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued [Truncate]
 - Quantity of interest is not \(f(x) \cdot g(y) \) ...
 - [Can express quantity of interest as inner product.]
 - ... (lots of grunge work ...)
 - Get a relevant invariance principle (next)
Invariance Principle for CC

Theorem: For every convex $K_1, K_2 \subseteq [-1,1]^\ell$

\exists transformations T_1, T_2 s.t.
if $f: \{0,1\}^n \to K_1$ and $g: \{0,1\}^n \to K_2$

have no common influential variable, then

$F = T_1 f: \mathbb{R}^n \to K_1$ and $G = T_2 g: \mathbb{R}^n \to K_2$ satisfy

$\text{Exp}_{x,y}[(f(x), g(y))] \approx \text{Exp}_{x,y}[(F(X), G(Y))]$

- Main differences: f, g vector-valued.
- Functions are transformed: $f \mapsto F; g \mapsto G$
- Range preserved exactly ($K_1 = \Delta(\ell); K_2 = [0,1]^\ell$!)
 - So F, G are still communication strategies!
Summarizing

- k bits of comm. with perfect sharing
 $\rightarrow 2^k$ bits with imperfect sharing.
- This is tight
- Invariance principle for communication
 - Agreement distillation
 - Low-influence strategies

G-Sparse-IP:
$x, y \in \{0, 1\}^n; wt(x) \approx 2^{-k} \cdot n$

Decide $\langle x, y \rangle \geq (0.9) 2^{-k} \cdot n$
 or $\langle x, y \rangle \leq (0.6) 2^{-k} \cdot n$?
Conclusions

- Imperfect agreement of context important.
 - Dealing with new layer of uncertainty.
 - Notion of scale (context LARGE)

- Many open directions+questions:
 - Imperfectly shared randomness:
 - One-sided error?
 - Does interaction ever help?
 - How much randomness?
 - More general forms of correlation?
Thank You!