Imperfectly Shared Randomness in Communication

Madhu Sudan
Microsoft Research

Joint work with Clément Canonne (Columbia), Venkatesan Guruswami (CMU) and Raghu Meka (UCLA).
Communication (Complexity)

- Recall Shannon (Noiseless setting)
 \[x \sim D(\{0,1\}^n) \]

- What will Bob do with \(x \)?
 - Often knowledge of \(x \) is overkill.
 - [Yao]'s model:
 - Bob has private information \(y \).
 - Wants to know \(f(x, y) \in \{0,1\} \).
 - Can we get away with much less communication?

In general, model allows interaction. For this talk, only one way comm.
Example:

- **Parity:**
 - $x = x_1 x_2 \ldots x_n; y = y_1 y_2 \ldots y_n;$
 - $f(x, y) = \sum_i (x_i + y_i) \mod 2 \triangleq \bigoplus_i (x_i \oplus y_i)$

- **Solution:**
 - Alice sends $a = \bigoplus_i x_i$ to Bob.
 - Bob computes $b = \bigoplus_i y_i$. Outputs $a \oplus b$.

 1 bit of communication!

 (No distributional assumption on x!)
Randomness in Communication

- As in many aspects of CS, randomness often helps find (more efficient) solutions.

- Two “Probabilistic Communication“ Models:
 - Private randomness:
 - Alice tosses random coins and uses that to determine what to send to Bob.
 - Shared randomness:
 - Alice and Bob share random string $r \in \{0,1\}^*$
 - Alice’s message depends on r
 - Bob’s use of message depends on r.

- Det. CC \geq Private. CC \geq Shared. CC
Example: Equality Testing

- \(f(x, y) = 1 \) if \(x = y \) and 0 o.w.
 - Deterministically: Communicate \(\Omega(n) \) bits
 - With private randomness:
 - Alice encodes \(x \mapsto E(x); \ (E: \{0,1\}^n \rightarrow \{0,1\}^N) \)
 - Picks \(i \leftarrow_U [N]; \) sends \((i, E(x)_i) \) to Bob.
 - Bob receives \((i, b) \) and outputs 1 if \(E(y)_i = b \)
 - Priv. CC = \(O(\log n) \) bits
 - With shared randomness:
 - Alice and Bob share \(i \).
 - Alice sends \(E(x)_i \).
 - Shared CC = \(O(1) \) bits.
This talk: Imperfect Sharing

- Generic motivation:
 - Where does the shared randomness come from?
 - Nature/Collective experience \(\Rightarrow\) Noisy
 - Do parties have to agree on their shares perfectly?
 - Can they get away with imperfection?
 - Is there a price?
Model: Imperfectly Shared Randomness

- Alice $\leftarrow r$; and Bob $\leftarrow s$ where $(r, s) = \text{i.i.d. sequence of correlated pairs } (r_i, s_i)_i; r_i, s_i \in \{-1, +1\}; \mathbb{E}[r_i] = \mathbb{E}[s_i] = 0; \mathbb{E}[r_is_i] = \rho \geq 0$.

- Notation:
 - $isr_\rho(f) = \text{ cc of } f \text{ with } \rho\text{-correlated bits.}$
 - $psr(f): \text{ Perfectly Shared Randomness cc.}$
 - $priv(f): \text{ cc with PRIVate randomness}$

- Starting point: for Boolean functions f
 - $psr(f) \leq isr_\rho(f) \leq priv(f) \leq psr(f) + \log n$
 - What if $psr(f) \ll \log n$? E.g. $psr(f) = O(1)$
Results

 - They show $isr(\text{Equality}) = O(1)$

- Our Results:
 - Generally: $psr(f) \leq k \Rightarrow isr(f) \leq 2^k$
 - Converse: $\exists f$ with $psr(f) \leq k \& isr(f) \geq 2^k$
Equality Testing (our proof)

- Key idea: Think inner products.
 - Encode $x \mapsto X = E(x); y \mapsto Y = E(y); X, Y \in \{-1, +1\}^N$
 - $x = y \Rightarrow \langle X, Y \rangle = N$
 - $x \neq y \Rightarrow \langle X, Y \rangle \leq N/2$
 - Estimating inner products:
 - Using ideas from low-distortion embeddings ...
 - Alice: Picks Gaussian $G \in \mathbb{R}^N$, sends $\langle G, X \rangle$
 - Bob: has $G' \sim G$; compares $\langle G, X \rangle$ with $\langle G', Y \rangle$
 - (mod details): $O_\rho(1)$ bits suffice if $G \approx G'$
 - [Bavarian et al.] Alternate protocol.
General Communication

- Idea: All communication \(\leq \) Inner Products
 - For each random string \(R \)
 - Alice’s message = \(i_R \in [2^k] \)
 - Bob’s output = \(f_R(i_R) \) where \(f_R: [2^k] \rightarrow \{0,1\} \)
 - W.p. \(\geq \frac{2}{3} \) over \(R \), \(f_R(i_R) \) is the right answer.
General Communication

- For each random string R
 - Alice’s message $= i_R \in [2^k]$
 - Bob’s output $= f_R(i_R)$ where $f_R: [2^k] \to \{0,1\}$
 - W.p. $\geq \frac{2}{3}$, $f_R(i_R)$ is the right answer.

- Vector representation:
 - $i_R \mapsto x_R \in \{0,1\}^{2^k}$ (unit coordinate vector)
 - $f_R \mapsto y_R \in \{0,1\}^{2^k}$ (truth table of f_R).
 - $f_R(i_R) = \langle x_R, y_R \rangle$; Acc. Prob. $\propto \langle X,Y \rangle; X = (x_R)_R; Y = (y_R)_R$
 - Gaussian protocol estimates inner products of unit vectors to within $\pm \epsilon$ with $O\left(\frac{1}{\epsilon^2}\right)$ communication.
Main Technical Result: Matching lower bound

- There exists (promise) problem f s.t.
 - $psr(f) \leq k$
 - $isr_{\rho}(f) \geq \exp(k)$

- The Problem:
 - Gap Sparse Inner Product (G-Sparse-IP).
 - Alice gets sparse $x \in \{0,1\}^{n}; \ wt(x) \approx 2^{-k} \cdot n$
 - Bob gets $y \in \{0,1\}^{n}$
 - Promise: $\langle x, y \rangle \geq (.9)2^{-k} \cdot n$ or $\langle x, y \rangle \leq (.6)2^{-k} \cdot n$
 - Decide which.
Protocol for G-Sparse-IP

Idea: $x_i \neq 0 \Rightarrow y_i$ correlated with answer.

Use (perfectly) shared randomness to find random index i s.t. $x_i \neq 0$.

Shared randomness: i_1, i_2, i_3, \ldots uniform over $[n]$

Alice \rightarrow Bob: smallest index j s.t. $x_{ij} \neq 0$.

Bob: Accept if $y_{ij} = 1$

Expect $j \approx 2^k; psr \leq k$.
ISR lower bounds

- Challenge: Usual CC lower bounds give a distribution and prove lower bound against it.
- G-Sparse-IP has a low-complexity protocol for every input, with shared randomness.
- Thus for every distribution, there exists a deterministic low-complexity protocol!
- So usual method can’t work ...

- Need to fix strategy first and then “tailor-make” a hard distribution for the strategy ...
ISR lower bound for GSIP: Overview

- Strategies: Alice $f_r(x) \in [\ell]$; Bob $g_s(y) \in \{0,1\}^\ell$;
- Two possibilities:
 - Case 1: Alice’s strategy and Bob’s strategy have common highly “influential coordinate”:
 - (i.e., flipping x_i changes Alice’s message etc.)
 - Leads to protocol for “agreement distillation” [We prove this is impossible.]
 - Case 2: Strategies have no common influential variable:
 - Invariance Principle \Rightarrow Solves some Gaussian problem
 - High complexity lower bound for Gaussian problem.
 (Details shortly)
Case 1: Agreement Distillation

- Problem: Charlie $\leftarrow r$; Dana $\leftarrow s$; $(r, s) \rho$-correlated
- Goal: Charlie outputs u; Dana outputs v

$$H_\infty(u), H_\infty(v) \geq t; \quad \Pr[u = v] \geq \gamma$$

- Lemma: With zero communication $\gamma = 2^{-\Omega(t)}$
- Proof: “Small-set expansion of noisy hypercube”
 - Well-known by now ... application of Bonami’s lemma.
 - See, e.g., [Analysis of Boolean functions, O’Donnell]

- Corollary: For c bits of communication,

$$c \geq \epsilon \cdot t + \log \gamma$$
Completing Case 1

- **Bad** $\triangleq \{ i \mid \Pr[\text{Inf}_i(f_r) \geq \text{high}] \geq \text{large}\}
 \cup \{ i \mid \Pr[\text{Inf}_i(g_s) \geq \text{high}] \geq \text{large}\}$

- Fact: (for our defn of influence) any function has bounded number of high influence variables.

- (By Fact + Markov) Can assume $|\text{Bad}| \leq \epsilon \cdot n$.

- Distributions on Yes and No instances:
 - **No**: x random sparse $\in \{0,1\}^n$; $y \leftarrow \{0,1\}^n$
 - **Yes**: Same as No on Bad coordinates.
 - On rest, y_i is more likely to be 1 if $x_i = 1$.
Completing Case 1 (contd.)

- Agreement strategy for Charlie + Dana:
 - Charlie: $i \in [n] \setminus \text{Bad}$ s.t. $\inf_i(f_r)$ high.
 - Dana: $j \in [n] \setminus \text{Bad}$ s.t. $\inf_j(g_s)$ high.

- Analysis:
 - $H_\infty(i), H_\infty(j)$ large since $i, j \notin \text{Bad}$.
 - $i = j$?: Case 1 assumption.

- Combined with lower bound for agreement distillation, implies Case 1 can’t occur.
Case 2: No common influential variable

- **Key Lemma:** Fix r, s; let $f = f_r$ and $g = g_s$.

 If ℓ small ($\approx 2^{2^k}$) and f, g distinguish Yes/No then f, g have common influential variable.

- **Idea:** Use “Invariance Principle”:
 - **Remarkable theorem:** Mossel, O’Donnell, Oleskiewicz; Mossel++;
 - **Informal form:** f, g low-degree polynomials with no common influential variable \Rightarrow $\text{Exp}_{x, y}[f(x)g(y)] \approx \text{Exp}_{X, Y}[f(X)g(Y)]$
 - where x, y Boolean n-wise product dist.
 - and X, Y Gaussian n-wise product dist.
The Gaussian-IP Problem

- Suppose we can get the “perfect” invariance theorem for us ...

- Would transform:
 Sol’n for G-Sparse-IP → Sol’n for G-Gaussian-IP
 - Alice, Bob get Gaussian unit vectors $X, Y \in \mathbb{R}^n$
 - Yes: $\langle X, Y \rangle \geq 2^{-k}$; No: $\langle X, Y \rangle \leq 0$

- Theorem: Non-sparse $X \Rightarrow CC \geq 2^k$ bits
 - Formally [Bar Yossef et al.]: Can reduce “indexing” to G-Gaussian-IP.
Invariance Principle + Challenges

- Informal Invariance Principle: \(f, g \) low-degree polynomials with no common influential variable
 \[\Rightarrow \text{Exp}_{x,y}[f(x)g(y)] \approx \text{Exp}_{X,Y}[f(X)g(Y)] \]
 - where \(x, y \) Boolean \(n \)-wise product dist.
 - and \(X, Y \) Gaussian \(n \)-wise product dist

- Challenges [+ Solutions]:
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued
 - \(g: \{0,1\}^n \rightarrow \{0,1\}^\ell: \) [Truncate range to \([0,1]^\ell\)]
 - \(f: \{0,1\}^n \rightarrow [\ell]: \) [????, [work with \(\Delta(\ell) \)]]
Invariance Principle + Challenges

- Informal Invariance Principle: \(f, g \) low-degree polynomials with no common influential variable
 \[\Rightarrow \text{Exp}_{x,y}[f(x)g(y)] \approx \text{Exp}_{X,Y}[f(X)g(Y)] \] (caveat \(f \approx f; g \approx g \))

- Challenges
 - Our functions not low-degree [Smoothening]
 - Our functions not real-valued [Truncate]
 - Quantity of interest is not \(f(x) \cdot g(y) \) ...
 - [Can express quantity of interest as inner product.]
 - ... (lots of grunge work ...)
 - Get a relevant invariance principle (next)
Invariance Principle for CC

- **Thm:** For every convex $K_1, K_2 \subseteq [-1,1]^\ell$

 ∃ transformations T_1, T_2 s.t.

 if $f: \{0,1\}^n \to K_1$ and $g: \{0,1\}^n \to K_2$

 have no common influential variable, then

 $F = T_1 f: \mathbb{R}^n \to K_1$ and $G = T_2 g: \mathbb{R}^n \to K_2$ satisfy

 $\text{Exp}_{x,y}[\langle f(x), g(y) \rangle] \approx \text{Exp}_{X,Y}[\langle F(X), G(Y) \rangle]$

- **Main differences:** f, g vector-valued.
- **Functions are transformed:** $f \mapsto F; g \mapsto G$
- **Range preserved exactly** ($K_1 = \Delta(\ell); K_2 = [0,1]^\ell$)!

 So F, G are still communication strategies!
Summarizing

- k bits of comm. with perfect sharing
 $\rightarrow 2^k$ bits with imperfect sharing.
- This is tight (for one-way communication)
 - Invariance principle for communication
 - Agreement distillation
 - Low-influence strategies
Conclusions

- Imperfect agreement of context important.
 - Dealing with new layer of uncertainty.
 - Notion of scale (context LARGE)

- Many open directions+questions:
 - Imperfectly shared randomness:
 - One-sided error?
 - Does interaction ever help?
 - How much randomness?
 - More general forms of correlation?
Thank You!