Probabilistically Checkable Proofs

Madhu Sudan
Microsoft Research
Can Proofs be Checked Efficiently?

Ayror Sappen

Pages to follow: 15783
Proofs and Theorems

• Conventional belief: Must read whole proof to verify it.
• Modern Constraint: Don’t have time to (do anything, leave alone to) read proofs.
• This talk:
 – New format for writing proofs.
 – Extremely efficiently verifiable probabilistically, with small error probability.
 – Not much longer than conventional proofs.
Outline of talk

• Quick primer on the Computational perspective on theorems and proofs (proofs can look very different than you’d think).

• Definition of Probabilistically Checkable Proofs (PCPs).

• Why (computer scientists) study proofs/PCPs.

• (Time permitting) Some overview of “ancient” (~25 year old) and “modern” (~10 year old) PCPs.
Part I: Primer
What is a proof?

\[a = b \]
\[a^2 = ab \]
\[a^2 - b^2 = ab - b^2 \]
\[(a + b)(a - b) = b(a - b) \]
\[a + b = b \]
\[2b = b \]
\[2 = 1 \]
Philosophy & Computing - 101

• Theorems vs. Proofs?
 – Theorem: “True Statement”
 – Proof: “Convinces you of truth of Theorem”
 – Why is Proof more “convincing” than Theorem?

• Easier to verify?
 – Computationally simple (mechanical, “no creativity needed”,
 deterministic?)
 – Computational complexity provides formalism!
 – Advantage of formalism: Can study alternate formats for writing
 proofs that satisfy basic expectations, but provide other features.
The Formalism

- Theorems/Proofs: Sequence of symbols.
- System of Logic \equiv Verification Procedure V.
 - (presumably V simple/efficient etc.)
- Proof P proves Theorem $T \iff V(T, P)$ accepts.
- T Theorem \iff There exists P s.t. $V(T, P)$ accepts.
- $V \equiv V'$ if both have same set of theorems.
 - But possible different proofs! Different formats!
Theorems: Deep and Shallow

• A Deep Theorem:
 \[x, y, z, n \in \mathbb{Z} - \{0\}, n \geq 3 \implies x^n + y^n \neq z^n \]
 \[\text{Proof: (too long to fit this margin).} \]

• A Shallow Theorem:
 – The number 3190966795047991905432 has a divisor between 25800000000 and 25900000000.
 – Proof: 25846840632.
Deep \leq Shallow

• Theory of NP-completeness [Cook, Levin, Karp’70s]:
 – Every deep theorem reduces to shallow one!

Given Theorem T and bound N on the length (#symbols) of a proof, there exist integers $0 \leq A, B, C \leq 2^{N^2}$ such that A has a divisor between B and C if and only if T has a proof of length $\leq N$ [Kilian’90s]

 – Shallow theorem easy to compute from deep one.
 – Proof not much longer ($N \rightarrow N^2$)
 – [Polynomial vs. Exponential growth important!]
Aside: P & NP

• **P** = Easy Computational Problems
 – Solvable in polynomial time
 – (E.g., Verifying correctness of proofs)

• **NP** = Problems where solutions are easy to verify
 – (E.g., Finding proofs of mathematical theorems)

• **NP-Complete** = Hardest problems in NP

• **Is P = NP?**
 – Is finding a solution as easy as specifying its properties?
 – Can we replace every mathematician by a computer?
 – Wishing = Working!
New Formats for Proofs?

• New format for Proof:
 – “Theorem” T has “Proof” Divisor D
 – New Verifier:
 • Compute A, B, C from T;
 • Verify D divides A; and $B \leq D \leq C$.

• Theory of Computing:
 – Many alternate formats for proofs.
 – Can one of these help
Part II: Prob. Checkable Proof
PCP Format \equiv PCP Verifier

1. Reads Theorem
2. Tosses random coins
3. Determines proof query locations
4. Reads locations. Accepts/Rejects

Does such a PCP Verifier, making few queries, exist?

T Theorem $\Rightarrow \exists P$ s.t. V accepts (always)
T False $\Rightarrow \forall P$ V rejects w. prob. 50%
Features of interest

• #queries: Small! Constant? 3 bits?
• Length (compared to old proof):
 – Linear? Quadratic? Exponential? [Strikeout]
• Transformer: Old proofs => New Proofs?
 – (Not essential, but desirable)
• [Arora,Lund,Motwani,S.,Szegedy’92]: PCPs with constant queries exist.
• [Dinur’06]: New construction
• [Large body of work]: Many improvements (to queries, length)
Part III: Why Proofs/PCPs?
Complexity of Optimization

• Well-studied optimization problems:
 – Map Coloring: Color a map with minimum # colors so adjacent regions have different colors.
 – Travelling Salesman Problem: Visit n given cities in minimum time.
 – Chip Design: Given two chips, are they functionally equivalent?
 – Quadratic system: Does a system of quadratic equations in n variables have a solution?

• [Pre 1970s] All seem hard? And pose similar barriers

• [Cook, Levin, Karp’70s]: All are equivalent, and equivalent to automated theorem proving.
 – Given T, and length N, find proof P of length $\leq N$ proving T.
Approximation Algorithms

• When problem is intractable to solve optimally, maybe one can find approximate solutions?
 – Find a travelling salesman trip taking $\leq 10\%$ more time than minimum?
 – Find map coloring that requires few more colors than minimum?
 – Find solution that satisfies 90% of the quadratic equations?

• Often such approximations are good enough. But does this make problem tractable?
Theory of Approximability

• 70s-90s: Many non-trivial efficient approximation algorithms discovered.
 – But did not converge to optimum? Why?
• 90s-2015: PCP Theory + Reductions
 – Proved limits to approximability: For many problems gave a limit beyond which finding even approximate solutions is hard.
• PCP ⇒ Inapproximability?
 – PCP ⇒ finding nearly correct proofs as hard as finding correct ones.
 – Analogous to “finding approximate solutions as hard as finding optimal ones”.

June 11, 2015
Part IV: PCP Construction Ideas
Aside: Randomness in Proofs

• Well explored in Computer Science community in 80s.

• Randomness+Interaction ⇒ Many effects
 – Simple Proofs of complex statements
 • Pepsi vs. Coke – the blind taste test.
 – Proofs Revealing very little about its truth
 • Prove “Waldo” exists without ruining game.
 – Proof that some statement has no short proof!
Essential Ingredient of PCPs

• **Locality of error**
 – Verifier should be able to point to error (if theorem is incorrect) after looking at few bits of proof.

• **Abundance of error**
 – Errors should be found with high probability.

• How do get these two properties?
Locality \iff NP-completeness

- 3Coloring is NP-complete:

$$\begin{align*}
\text{Error is 2-local Abundance?}
\end{align*}$$
Abundance I: via Algebra

• Express (graph-coloring) via Algebra:
• Leads to problems of the form:
 – Given polynomial $A(x, y)$ find $B(x)$ and $C(x, y)$ such that $F(A, B, C) = 0$.
 • Example $F(A, B, C) = A(x, y)^2 - 3y^2C(x + 1, y - 1)B(x)C(3y)$
 • Actual example doesn’t fit this margin 😐

• Advantage of polynomials:
 – Abundance of non-zeroes.
 – Non-zero polynomial usually evaluates to non-zero.
 – Can test for Polynomials
Abundance II: via Graph Theory

- [Dinur’06] Amplification:

- Constant Factor more edges
- Double fraction of violated edges (in any coloring)
- Repeat many times to get fraction upto constant.
Wrapping up

• PCPs
 – Highly optimistic/wishful definition
 – Still achievable!
 – Very useful
 • Understanding approximations (Hugely transformative)
 • Checking outsourced computations
 • Unexpected consequences: Theory of locality in error-correction
Back to Proofs: Philosophy 201

• So will math proofs be in PCP format?
• NO!
 – Proofs *never* self-contained.
 • Assume common language.
 – Proofs also rely on common context
 • Repeating things we all know is too tedious.
 – Proofs rarely intend to convey truth.
 • More vehicles of understanding/knowledge.

• Still PCP theory might be useful in some contexts:
 – Verification of computer assisted proofs?
Thank You!