## Locality in Codes and Lifting

#### Madhu Sudan MSR

Joint work with Alan Guo (MIT) and Swastik Kopparty (Rutgers)

#### **Error-Correcting Codes**

- (Linear) Code  $C \subseteq \mathbb{F}_q^n$ .
  - $-n \stackrel{\text{def}}{=} \text{block length}$
  - $-k = \dim(C) \stackrel{\text{def}}{=} \text{message length}$
  - $-R(C) \stackrel{\text{def}}{=} k/n$ : Rate of C (want as high as possible)
  - $-\delta(C) \stackrel{\text{def}}{=} \min_{x \neq y \in C} \{\delta(u, v) \stackrel{\text{def}}{=} \Pr_i[u_i \neq v_i]\}.$
- Basic Algorithmic Tasks
  - Encoding: map message in  $\mathbb{F}_q^k$  to codeword.
  - Testing: Decide if  $u \in C$
  - Correcting: If  $u \notin C$ , find nearest  $v \in C$  to u.

## Locality in Algorithms

- "Sublinear" time algorithms:
  - Algorithms that run in time o(input), o(output).
  - Assume random access to input
  - Provide random access to output
  - Typically probabilistic; allowed to compute output on approximation to input.
- LTCs: Codes that have sublinear time testers.
  - Decide if  $u \in C$  probabilistically.
  - Allowed to accept u if  $\delta(u, C)$  small.
- LCCs: Codes that have sublinear time correctors.
  - If  $\delta(u, C)$  is small, compute  $v_i$ , for  $v \in C$  closest to u.

03/24/2015 UW: Locality and Lifting 3 of 27

#### LTCs and LCCs: Formally

- C is a  $(\ell, \epsilon)$ -LTC if there exists a tester that
  - Makes  $\ell(n)$  queries to u.
  - Accept  $u \in C$  w.p. 1
  - Reject u w.p. at least  $\epsilon \cdot \delta(u, C)$ .
- C is a  $(\ell, \epsilon)$ -LCC if exists decoder D s.t.
  - Given oracle access u close to  $v \in C$ , and i
  - Decoder makes  $\ell(n)$  queries to u.
  - Decoder  $D^u(i)$  usually outputs  $v_i$ .
    - $\Pr_i[D^u(i) \neq v_i] \leq \delta(u, v)/\epsilon$
- Often: ignore  $\epsilon$  and focus on  $\ell$

# Motivation – 1 ("Practical")

- How to encode massive data?
  - Solution I
    - Break data into small pieces; encode separately.
    - Pro: Recovery time ~ |small|
    - Con: Pr[failure] = #pieces X Pr[failure of a piece]
  - Solution II
    - Encode all data in one big chunk
    - Pro: Pr[failure] = exp(-|big chunk|)
    - Con: Recovery time ~ | big chunk |
  - Locality (if possible): Best of both Solutions!!

03/24/2015 UW: Locality and Lifting 5 of 27

# Motivation – 2 ("Theoretical")

- (Many?) mathematical consequences:
  - Probabilistically checkable proofs:
    - Use specific LCCs and LTCs
  - Hardness amplification:
    - Constructing functions that are very hard on average from functions that are hard on worst-case.
    - Any (sufficiently good) LCC ⇒ Hardness amplification
  - Small set expanders (SSE):
    - Usually have mostly small eigenvalues.
    - LTCs ⇒ SSEs with many big eigenvalues [Barak et al., Gopalan et al.]

03/24/2015 UW: Locality and Lifting 6 of 27

# Example: Multivariate Polynomials

- Message = multivariate polynomial;
   Encoding = evaluations everywhere.
  - $\operatorname{RM}[m, d, q] \stackrel{\text{def}}{=} \{ \langle f(\alpha) \rangle_{\alpha \in \mathbb{F}_q^m} | f \in \mathbb{F}_q[x_1, \dots, x_m], \deg(f) \leq d \}$
- Locality?
  - Restrictions of low-degree polynomials to lines yield low-degree (univ.) polys.
  - Random lines sample  $\mathbb{F}_q^m$  uniformly (pairwise ind'ly)



#### LDCs and LTCs from Polynomials

- Decoding  $(d \le q)$ :
  - Problem: Given  $f \approx p$ ,  $\alpha \in \mathbb{F}_q^m$ , compute  $p(\alpha)$ .
  - Pick random  $\beta$  and consider  $f|_L$  where  $L = \{\alpha + t \beta \mid t \in \mathbb{F}_q\}$  is a random line  $\exists \alpha$ .
  - Find univ. poly  $h \approx f|_L$  and output  $h(\alpha)$
- Testing  $(d \le q)$ :
  - Verify  $\deg(f|_L) \leq d$ .
- Parameters:

$$-n=q^m$$
;  $\ell=q=n^{\frac{1}{m}}$ ;  $R(\mathcal{C})\approx\left(\frac{1}{m}\right)^m$ 

# **Decoding Polynomials**

- *d* < *q* 
  - Correct more errors (possibly list-decode)
  - can correct ≈ 1  $\sqrt{d/q}$  fraction errors [STV].
- d > q
  - Distance of code  $\delta \approx q^{-d/(q-1)}$
  - Decode by projecting to  $\approx \frac{d}{q-1}$  dimensions. "decoding dimension".
  - Locality  $\approx 1/\delta$ .
  - Lots of work to decode from  $\approx \delta$  fraction errors [GopalanKlivansZuckerman, G, BhowmickLovett].

# **Testing Polynomials**

- $d \ll q$ :
  - Even slight advantage on test implies correlation with polynomial.[RazSafra, AroraSudan, ...]
- d > q:
  - Testing dimension  $t=\frac{d}{q-\frac{q}{p}}$ ; where  $q=p^s$ ;
  - Project to t dimensions and test.
  - $-\left(q^{t},\min\{\epsilon_{q},q^{-2t}\}\right)$ -LTC.

# Testing vs. Decoding dimensions

- Why is decoding dimension d/(q-1) ?
  - Every function on fewer variables is a degree d polynomial. So clearly need at least this many dimensions.
- Why is testing dimension d/(q-q/p) ?
  - Consider  $q = 2^s$ ,  $d = \frac{q}{2}$  and  $f = x^d y^d$ .
  - On line y = ax + b,
  - $-f = x^d (ax + b)^d = x^d (a^d x^d + b^d) = a^d x + b^d x^d.$
  - So deg(f) = q = 2d, but f has degree ≤ d on every line!
  - In general if  $q=p^s$  then powers of p pass through ( ... )
  - Aside: Using more than testing dimension has not paid dividend with one exception [RazSafra]

03/24/2015 UW: Locality and Lifting 11 of 27

#### Other LTCs and LCCs

- Composition of codes yields better LTCs.
  - Reduces  $\ell(\cdot)$  (to even 3) without too much loss in R(C).
  - But till recently,  $R(C) \leq \frac{1}{2}$
- LCCs
  - Till 2006, multivariate polynomials almost best known.
  - 2007+ [Yekhanin, Raghavendra, Efremenko] great LDCs (weaker than LCCs) for  $\ell(n) = O(1)$ ; n = superpoly(k).
  - 2010 [KoppartySarafYekhanin] Multiplicity codes get  $R(C) \to 1$  with  $\ell(n) = n^{\epsilon}$
  - For  $\ell(n) = \log n$ ; multiv. Polys are still best known.

## **Today**

- New Locally Correctible and Testable Codes from "Lifting".
  - $-R(C) \rightarrow 1$ ;  $\ell(n) = n^{\epsilon}$  for arbitrary  $\epsilon > 0$ .
  - 1 of 3 "LCCs" with this property
    - After Multiplicity codes [KoppartySarafYekhanin]
    - Also Expander based LCCs [HemmenwayOstrovksyWooters]
  - 1 of 2 "LTCs" with this property
    - After [Ben-SassonViderman]
  - $\Rightarrow$  First "LTC + LCC"!
  - [Meir'14]: "LTC+LCCs" along the Singleton Bound!!

03/24/2015 UW: Locality and Lifting 13 of 27

#### The codes

- Alphabet:  $\mathbb{F}_q$
- Coordinates:  $\mathbb{F}_q^m$
- Parameter: degree d
- Message space:

$$\{f: \mathbb{F}_q^m \to \mathbb{F}_q \mid \deg(f|_L) \le d, \forall \text{ lines } L\}$$

- Code: Evaluations of message on all of  $\mathbb{F}_q^m$
- And oh ...  $q = 2^s$ ;  $d = (1 \epsilon)q$ ; m = O(1)

# Recall: Bad news about $\mathbb{F}_{2^s}$

- Functions that look like degree d polynomials on every line  $\neq$  degree d m-variate polynomials.
- But this is good news!
  - Message space includes all degree d polynomials.
  - And has more.
  - So rate is higher!
  - But does this make a quantitative difference?
    - As we will see ... **YES!** Most of the dimension comes from the ``illegitimate'' functions.

## Generalizing: Lifted Codes

- Consider  $B \subseteq \{\mathbb{F}_Q^t \to \mathbb{F}_q\}$ .
  - $-\mathbb{F}_Q$  extends  $\mathbb{F}_q$
  - Preferably B invariant under affine transformations of  $\mathbb{F}_O^t$ .
- Lifted code  $C \stackrel{\text{def}}{=} \text{Lift\_}m(B) \subseteq \{\mathbb{F}_Q^m \to \mathbb{F}_q\}$ -  $C = \{f \mid f|_A \in B, \forall t\text{-dim. affine subspaces } A\}.$
- Previous example:

$$-B = \{ f : \mathbb{F}_q \to \mathbb{F}_q \mid \deg(f) \le d \}$$

03/24/2015 UW: Locality and Lifting 16 of 27

#### Properties of lifted codes

Distance:

$$-\delta(C) \ge \delta(B) - Q^{-t} + Q^{-m} \approx \delta(B)$$

- Local Decodability:
  - Same decoding algorithm as for RM codes.
  - -B is  $(\ell, \epsilon)$ -LDC implies C is  $(\ell, \Omega(\epsilon))$ -LDC.
- Local Testability?

## Local Testability of lifted codes

#### Local Testability:

- Test: Pick A and verify  $f|_A \in B$ .
- "Single-orbit characterization":  $(Q^t, Q^{-2t})$ -LTC [KS]
- (Better?) analysis for lifted tests:  $(Q^t, \epsilon_Q)$ -LTC [HRS] (extends [BKSSZ,HSS] )

#### Musings:

- Analyses not robust (test can't accept if  $f|_A \approx B$ .) [Work in progress]
- Still: generalizes almost all known tests ... [Main exceptions [ALMSS,PS,RS,AS]].
- Key question: what is min K s.t.  $f|_{A_1}, ..., f|_{A_K} \in B \Rightarrow$  there exists an interpolator  $g \in C$  s.t.  $g|_{A_i} = f|_{A_i}$

#### Returning to (our) lifted codes

- Distance √
- Local Decodability ✓
- Local Testability ✓
- Rate?
  - No generic analysis; has to be done on case by case basis.
  - Just have to figure out which monomials are in C.

#### Rate of bivariate Lifted RS codes

- $B = \{ f \in \mathbb{F}_q[x] \mid \deg(f) \le d = (1 \epsilon)q \}; \ q = 2^s$ - Will set  $\epsilon = 2^{-c}$  and let  $c \to \infty$ .
- $C = \{ f : \mathbb{F}_q [x, y] \mid f|_{y=ax+b} \in B, \forall a, b \}$ 
  - − When is  $x^i y^j \in C$ ?
  - Clearly if  $i + j \le d$ ; But that is at most  $\frac{q^2}{2}$  pairs.
  - Want  $\approx \frac{q^2}{2}$  more such pairs.
  - When is every term of  $x^i(ax + b)^j \operatorname{mod}(x^q x)$  of degree at most d?

03/24/2015 UW: Locality and Lifting 20 of 27

#### Lucas's theorem & Rate

- Notation:  $r \leq_2 j$ , if  $r = \sum_i r_i 2^i$  and  $j = \sum_i j_i 2^i$  ( $r_i, j_i \in \{0,1\}$ ) and  $r_i \leq j_i$  for all i.
- Lucas's Theorem:  $x^r \in \operatorname{supp}\left((ax+b)^j\right)$  iff  $r \leq_2 j$ .
- $\Rightarrow \text{supp}(x^i(ax+b)^j) \ni x^{i+r} \text{ iff } r \leq_2 j$
- So given i, j;  $\exists r \leq_2 j \text{ s.t. } i + r \pmod{q} > d$ ?

## Binary addition etc.

03/24/2015 UW: Locality and Lifting 22 of 27

#### Other lifted codes

Best LCC with O(1) locality.

$$-B = \{f : \mathbb{F}_{2^{S}} \to \mathbb{F}_{2} \mid \sum_{a} f(a) = 0\};$$

$$-s = \log_{2} \ell = 0(1)$$

$$-C = \text{Lift}_{m}(B);$$

$$-n = 2^{sm}; \ell\text{-LCC}; \dim(C) = (\log n)^{\ell}$$

Alternate codes for BGHMRS construction:

$$-B = \left\{ f : \mathbb{F}_4^{m - \log 1/\epsilon} \to \mathbb{F}_2 \middle| \sum_a f(a) = 0 \right\}$$

$$-C = \operatorname{Lift}_m(B);$$

$$-\ell = \epsilon n; \dim(C) = n - \operatorname{polylog}(n)$$

# Nikodym Sets

•  $N \subseteq \mathbb{F}_q^m$  is a Nikodym set if it almost contains a line through every point:

$$- \forall a \in \mathbb{F}_q^m, \exists b \in \mathbb{F}_q^m \text{ s.t. } \{a + tb \mid t \in \mathbb{F}_q\} \subseteq N \cup \{a\}$$

• Similar to Kakeya Set (which contain line in every direction).  $- \forall b \in \mathbb{F}_q^m, \exists \ a \in \mathbb{F}_q^m \text{ s.t. } \{a+tb \mid t \in \mathbb{F}_q\} \subseteq K$ 

$$- \ \forall \ b \in \mathbb{F}_q^m$$
,  $\exists \ a \in \mathbb{F}_q^m$  s.t.  $\{a + tb \mid t \in \mathbb{F}_q\} \subseteq K$ 

• [Dvir], [DKSS]:  $|K|, |N| \ge \left(\frac{q}{2}\right)^{m}$ 

# Proof ("Polynomial Method")

- Find low-degree poly  $P \neq 0$  s.t.  $P(b) = 0, \forall b \in N$ .
- $\deg(P) < q 1$  provided  $|N| < \binom{m+q-2}{m}$ .
- But now  $P|_{L_a} = 0$ ,  $\forall$  Nikodym lines  $L_a \Rightarrow P(a) = 0 \ \forall a$ , contradicting  $P \neq 0$ .
- Conclude  $|N| \ge {m+q-2 \choose m} \approx \frac{q^m}{m!}$ .
- Multiplicities, more work, yields  $|N| \ge \left(\frac{q}{2}\right)^m$ .
- But what do we really need from P?
  - P comes from a large dimensional vector space.
  - $-P|_{L}$  is low-degree!
  - Using P from lifted code yields  $|N| \ge (1 o(1))q^m$  (provided q of small characteristic).

03/24/2015 UW: Locality and Lifting 25 of 27

#### Conclusions

- Lifted codes seem to extend "low-degree polynomials" nicely:
  - Most locality features remain same.
  - Rest are open problems.
  - Lead to new codes.
- More generally: Affine-invariant codes worth exploring.
  - Can we improve on multiv. poly in polylog locality regime?

03/24/2015 UW: Locality and Lifting 26 of 27

#### Thank You