Communication Amid Uncertainty

Madhu Sudan
Harvard

Based on
- Goldreich, Juba, S. (JACM 2011)
- Juba, Kalai, Khanna, S. (ITCS 2011)
- Haramaty, S. (ITCS 2014)
- Canonne, Guruswami, Meka, S. (ITCS 2015)
- Ghazi, Kamath, S. (SODA 2016)
- Ghazi, Komargodski, Kothari, S. (SODA 2016)
- Leshno, S. (manuscript)
Communication vs. Computation

- Interdependent technologies: Neither can exist without other
- Technologies/Products/Commerce developed (mostly) independently.
 - Early products based on clean abstractions of the other.
 - Later versions added other capability as afterthought.
 - Today products ... deeply integrated.
- Deep theories:

Well separated ... and have stayed that way

Turing ‘36

Shannon ‘48
Consequences of the wall

- **Computing theory:**
 - Fundamental principle = Universality
 - You can program your computer to do whatever you want.
 - \Rightarrow Heterogeneity of devices

- **Communication theory:**
 - Centralized design (Encoder, Decoder, Compression, IPv4, TCP/IP).
 - You can NOT program your device!
 - \Leftarrow Homogeneity of devices

- **Contradiction! But does it matter?**
 - Yes!
Sample problems:

- Universal printing:
 - You are visiting a friend. You can use their Wifi network, but not their printer. Why?

- Projecting from your laptop:
 - Machines that learn to communicate, and learn to understand each other.

- Digital libraries:
 - Data that lives forever (communication across time), while devices change.
Essence of “semantics”: Uncertainty

- Shannon:
 - “The significant aspect is that the actual message is one selected from a set of possible messages”

- Essence of unreliability today:
 - Context: Determines set of possible messages.
 - dictionary, grammar, general knowledge
 - coding scheme, prior distribution, communication protocols ...
 - Context is HUGE; and not shared perfectly;
Modelling uncertainty

Uncertain Communication Model
Classical Shannon Model

A_1
A_2
A_3
A_k

B_1
B_2
B_3
B_j

Channel

New Class of Problems
New challenges
Needs more attention!
Hope

- Better understanding of existing mechanisms
 - In natural communication
 - In “ad-hoc” (but “creative”) designs

- What problems are they solving?

- Better solutions?
 - Or at least understand how to measure the quality of a solution.
II: Uncertain Compression
Human-Human Communication

- Role of dictionary = ?
 - [Juba, Kalai, Khanna, S. 11]
- Dictionary: list of words representing message
 - words appear against multiple messages
 - multiple words per message.
- How to decide which word to use? Context!
 - Encoding: Given message, use shortest unambiguous word in current context.
 - Decoding: Given word, use most likely message in current context, (among plausible messages)
- Context = ???
 - Prob. distribution on messages
 \[P_i = \text{Prob} \{ \text{message} = M_i \} \]
Good (Ideal?) dictionary
- Should compress messages to entropy of context: $H(P = \langle P_1, ..., P_N \rangle)$.

Even better dictionary?
- Should not assume context of sender/receiver identical!
- Compression should work even if sender uncertain about receiver (or receivers’ context).

Theorem [JKKS]: If dictionary is “random” then compression achieves message length $H(P) + \Delta$, if sender and receiver distributions are “Δ-close”.

$M_1 = w_{11}, w_{12}, ...$
$M_2 = w_{21}, w_{22}, ...$
$M_3 = w_{31}, w_{32}, ...$
$M_4 = w_{41}, w_{42}, ...$
...
Implications

- Reflects tension between ambiguity resolution and compression.
 - Larger the gap in context (Δ), larger the encoding length.
- Coding scheme reflects human communication?
- “Shared randomness” debatable assumption:
 - Dictionaries do have more structure.
 - Deterministic communication? [Haramaty+S,14]
 - Randomness imperfectly shared? Next ...
III: Imperfectly Shared Randomness
Communication (Complexity)

- Compression (Shannon, Noiseless Channel)
 \[x \sim P = (P_1, \ldots, P_n) \]

- What will Bob do with \(x \)?
 - Often knowledge of \(x \) is overkill.
(Recall) Communication Complexity

The model (with shared randomness)

\[f: (x, y) \mapsto \Sigma \]

\(C(f) = \# \text{bits exchanged by best protocol} \)

Usually studied for lower bounds.
This talk: CC as +ve model.
Brief history

- ∃ problems where Alice can get away with much fewer bits of communication.
 - Example: $\oplus (x, y) \triangleq \oplus_i (x_i \oplus y_i)$
 - But very few such deterministically.

- Enter Randomness:
 - Alice & Bob share random string r (ind. of x, y)
 - Many more problems; Example:
 - $\text{Eq}(x, y) = 1$ if $x = y$ and 0 otherwise
 - Deterministically: $\Theta(n)$

[Ghazi, Kamath, S., SODA 2016]: Taxonomy of simple problems; Many interesting problems and protocols!

... can be more effective (shorter than $|x|, H(x), H(y), I(x; y)$...)
Results

- [Newman ‘90s]: \(CC \) without sharing \(\leq CC \) with sharing + \(\log n \)
- But additive cost of \(\log n \) may be too much.
 - Compression! Equality!!
- Model recently studied by [Bavarian et al.’14]
 - Equality: \(O(1) \) bit protocol w. imperfect sharing
- Our Results: [Canonne, Guruswami, Meka, S.’15]
 - Compression: \(O(H(P) + \Delta) \)
 - Generally: \(k \) bits with shared randomness
 \[\Rightarrow O(2^k) \] bits with imperfect sharing.
 - \(k \rightarrow 2^k \) loss is necessary.
Some General Lessons

- **Compression Protocol:**
 - Adds “error-correction” to [JKKS] protocol.
 - Send shortest word that is far from words of other high probability messages.
 - Another natural protocol.

- **General Protocol:**
 - Much more “statistical”
 - **Classical protocol for Equality:**
 - Alice sends random coordinate of ECC(x)
 - **New Protocol**
 - ~ Alice send # 1’s in random subset of coordinates.
IV: Focussed Communication
Model

- Bob wishes to compute $f(x, y)$; Alice knows $g \approx f$;
- Alice, Bob given g, f explicitly. (New input size $\sim 2^n$)
- Modelling Questions:
 - What is \approx?
 - Is it reasonable to expect to compute $f(x, y)$?
 - E.g., $f(x, y) = f'(x)$? Can’t compute $f(x, y)$ without communicating x
- Our Choices:
 - Assume x, y come from a distribution μ
 - $f \approx g$ if $f(x, y)$ usually equals $g(x, y)$
 - Suffices to compute $h(x, y)$ for $h \approx f$
Results

- Thm [Ghazi,Komargodski,Kothari,S]: \(\exists f \approx g, \) with \(CC(f), CC(g) = 1 \), but uncertain complexity \(\approx \sqrt{n} \).

- Thm [GKKS]: But not if \(x \) independent of \(y \) (in 1-way setting).

- 2-way setting, even 2-round, open!

Main Idea:

- Canonical 1-way protocol for \(f \):
 - Alice + Bob share random \(y_1, \ldots, y_m \in \{0,1\}^n \).
 - Alice sends \(g(x, y_1), \ldots, g(x, y_m) \) to Bob.
 - Protocol used previously ... but not as "canonical".

- Canonical protocol robust when \(f \approx g \).
Conclusions

- Positive view of communication complexity: Communication with a focus can be effective!
- Context Important:
 - (Elephant in the room: Huge, unmentionable)
 - New layer of uncertainty.
 - New notion of scale (context LARGE)
 - Importance of $o(\log n)$ additive factors.
- Many “uncertain” problems can be solved without resolving the uncertainty (which is a good thing)
- Many open directions+questions