Reliable Meaningful Communication

Madhu Sudan
Harvard University
This Talk

- Part I: Reliable Communication
 - Problem and History (briefly)
- Part II: Recovering when errors overwhelm
 - Sample of my work in the area
- Part III: Modern challenges
 - Communicating amid uncertainty
Part I: Reliable Communication
Reliable Communication?

- Problem from the 1940s: Advent of digital age.

- Communication media are always noisy
 - But digital information less tolerant to noise!
Reliability by Repetition

- Can repeat (every letter of) message to improve reliability:

 WWW EEE AAA RRR EEE NNN OOO WWW ...

 ↓

 WXW EEA ARA SSR EEE NMN OOP WWW ...

- Elementary Reasoning:
 - ↑ repetitions ⇒ ↓ Prob. decoding error; but still +ve
 - ↑ length of transmission ⇒ ↑ expected # errors.
 - Combining above: Rate of repetition coding → 0 as length of transmission increases.

- Belief (pre1940):
 - Rate of any scheme → 0 as length → ∞
Shannon’s Theory [1948]

- Sender “Encodes” before transmitting
- Receiver “Decodes” after receiving

Encoder/Decoder arbitrary functions.

\[E: \{0,1\}^k \rightarrow \{0,1\}^n \]
\[D: \{0,1\}^n \rightarrow \{0,1\}^k \]

- Rate \(= \frac{k}{n} \);
- Requirement: \(m = D(E(m) + \text{error}) \) w. high prob.
- What are the best \(E, D \) (with highest Rate)?
Shannon’s Theorem

- If every bit is flipped with probability \(p \)
 - Rate \(\rightarrow 1 - H(p) \) can be achieved.
 \[
 H(p) \equiv p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1-p}
 \]
- This is best possible.
- Examples:
 - \(p = 0 \Rightarrow \text{Rate} = 1 \)
 - \(p = \frac{1}{2} \Rightarrow \text{Rate} = 0 \)
 - Monotone decreasing for \(p \in (0, \frac{1}{2}) \)
 - Positive rate for \(p = 0.4999 \); even if \(k \rightarrow \infty \)
Shannon’s contributions

- Far-reaching architecture:
 - Alice
 - Encoder
 - Decoder
 - Bob

- Profound analysis:
 - First (?) use of probabilistic method.
- Deep Mathematical Discoveries:
 - Entropy, Information, Bit?
Challenges post-Shannon

- Encoding/Decoding functions not “constructive”.
 - Shannon picked E at random, D brute force.
 - Consequence:
 - D takes time $\sim 2^k$ to compute (on a computer).
 - E takes time 2^{2^k} to find!
- Algorithmic challenge:
 - Find E, D more explicitly.
 - Both should take time $\sim k, k^2, k^3$... to compute
Progress 1950-2010

- Profound contributions to the theory:
 - New coding schemes, decoding algorithms, analysis techniques ...
 - Major fields of research:
 - Communication theory, Coding Theory, Information Theory.
- Sustained Digital Revolution:
 - Widespread conversion of everything to “bits”
 - Every storage and communication technology relies/builds on the theory.
 - “Marriage made in heaven” [Jim Massey]
Part II: Overwhelming #errors
Explicit Codes: Reed-Solomon Code

- **Messages = Coefficients of Polynomials.**
 - **Example:**
 - Message = (100, 23, 45, 76)
 - Think of polynomial \(p(x) = 100 + 23x + 45x^2 + 76x^3 \)
 - Encoding: \((p(1), p(2), p(3), p(4), \ldots, p(n)) \)
 - First four values suffice, rest is redundancy!

- **(Easy) Facts:**
 - Any \(k \) values suffice where \(k = \text{length of message} \).
 - Can handle \(n - k \) erasures or \((n - k)/2 \) errors.
 - Explicit encoding = polynomial evaluation
 - Efficient decoding? [Peterson 1960]
Overwhelming Errors? List Decoding

- Can we deal with more than 50% errors?
 - $\frac{n}{2}$ is clearly a limit – right?
 - First half = evaluations of p_1
 - Second half = evaluations of p_2
 - What is the right message: p_1 or p_2?
 - $\frac{n}{2}$ (even $\frac{n-k}{2}$) is the limit for “unique” answer.
- List-decoding: Generalized notion of decoding.
 - Report (small) list of possible messages.
 - Decoding “successful” if list contains the message polynomial.
Reed-Solomon List-Decoding Problem

- **Given:**
 - **Parameters:** n, k, t
 - **Points:** $(x_1, y_1), \ldots, (x_n, y_n)$ in the plane (finite field actually)

- **Find:**
 - All degree k poly’s that pass thru t of n points
 - i.e., all p s.t.
 - $\deg(p) < k$
 - $\# \{i \mid p(x_i) = y_i \} \geq t$
Decoding by example + picture [S’96]

\[n = 14; k = 1; t = 5 \]

Algorithm idea:

- Find algebraic explanation of all points.

\[x^4 - y^4 - x^2 + y^2 = 0 \]

- Stare at the solution \(\smiley\) (factor the polynomial)

\[(x + y)(x - y)(x^2 + y^2 - 1)\]
Decoding by example + picture [S’96]

$n = 14; k = 1; t = 5$

Algorithm idea:

- Find algebraic explanation of all points.

 $$x^4 - y^4 - x^2 + y^2 = 0$$

- Stare at the solution 🙄 (factor the polynomial)

$$\text{(x + y)(x - y)(x^2 + y^2 - 1)}$$
Decoding Algorithm

- Fact: There is always a degree $2\sqrt{n}$ polynomial thru n points
 - Can be found in polynomial time (solving linear system).

- [80s]: Polynomials can be factored in polynomial time [Grigoriev, Kaltofen, Lenstra]

- Leads to (simple, efficient) list-decoding correcting κ fraction errors for $\kappa \to 1$
Part III: Modern Challenges
Communication Amid Uncertainty?
New Kind of Uncertainty

- Uncertainty always has been a central problem:
 - But usually focusses on uncertainty introduced by the channel
 - Rest of the talk: Uncertainty at the endpoints (Alice/Bob)

- Modern complication:
 - Alice+Bob communicating using computers
 - Huge diversity of computers/computing environments
 - Computers as diverse as humans; likely to misinterpret communication.

- Alice: How should I “explain” to Bob?
- Bob: What did Alice mean to say?
Example Problem

- **Archiving data**
 - Physical libraries have survived for 100s of years.
 - Digital books have survived for five years.
 - Can we be sure they will survive for the next five hundred?

- **Problem: Uncertainty of the future.**
 - What formats/systems will prevail?
 - Why aren’t software systems ever constant?
Challenge:

- If Decoder does not know the Encoder, how should it try to guess what it meant?

Similar example:

- Learning to speak a foreign language
 - Humans do ... (?)
 - Can we understand how/why?
 - Will we be restricted to talking to humans only?
 - Can we learn to talk to “aliens”? Whales? 😊

Claim:

- Questions can be formulated mathematically.
- Solutions still being explored.
Modelling uncertainty

Uncertain Communication Model
Classical Shannon Model

Channel

New Class of Problems
New challenges
Needs more attention!
Modern questions/answers

- Communicating players share large context.
 - Knowledge of English, grammar, socio-political context
 - Or ... Operating system, communication protocols, apps, compression schemes.
- But sharing is not perfect.
 - Can we retain some of the benefit of the large shared context, when sharing is imperfect?
- Answer: Yes ... in many cases ... [ongoing work]
 - New understanding of human mechanisms
 - New reliability mechanisms coping with uncertainty!
Language as compression

- Why are dictionaries so redundant + ambiguous?
 - Dictionary = map from words to meaning
 - For many words, multiple meanings
 - For every meaning, multiple words/phrases
 - Why?

- Explanation: “Context”
 - Dictionary:
 - Encoder: Context1 × Meaning → Word
 - Decoder: Context2 × Word → Meaning
 - Tries to compress length of word
 - Should works even if Context1 ≠ Context2

- [Juba, Kalai, Khanna, S’11], [Haramaty, S’13]: Can design encoders/decoders that work with uncertain context.
Summary

- Reliability in Communication
 - Key Engineering problem of the past century
 - Led to novel mathematics
 - Remarkable solutions
 - Huge impact on theory and practice
- New Era has New Challenges
 - Hopefully new solutions, incorporating ideas from ...
 - Information theory, computability/complexity, game theory, learning, evolution, linguistics ...
 - ... Further enriching mathematics
Thank You!