Imperfectly Shared Randomness in Communication

Madhu Sudan
Harvard

Joint work with Clément Canonne (Columbia), Venkatesan Guruswami (CMU) and Raghu Meka (UCLA).
Classical theory of communication

Shannon (1948)

- Clean architecture for reliable communication.
- But does Bob really need all of x?
The model (with shared randomness)

\[f : (x, y) \mapsto \Sigma \]

\[R = $$$ \]

\[CC(f) = \# \text{bits exchanged by best protocol} \]

\[f(x, y) \text{ w.p. } 2/3 \]
Communication Complexity - Motivation

- **Standard: Lower bounds**
 - Circuit complexity, Streaming, Data Structures, extended formulations ...

- **This talk:**
 - Communication complexity as model for communication
 - Food for thought: Shannon vs. Yao? Which is the right model.
 - Typical (human-human/computer-computer) communication involves large context and brief communication.
 - Contexts imperfectly shared.
This talk

- Example problems with low communication complexity.

- New form of uncertainty and overcoming it.
Aside: Easy CC Problems

- **Equality testing:**
 \[EQ(x, y) = 1 \iff x = y; \quad CC(EQ) = O(1) \]

- **Hamming distance:**
 \[H_k(x, y) = 1 \iff \Delta(x, y) \leq k; \quad CC(H_k) = O(k \log k) \quad [\text{Huang et al.}] \]

- **Small set intersection:**
 \[\cap_k (x, y) = 1 \iff \text{wt}(x), \text{wt}(y) \leq k \\& \exists i \in S . t . x_i = y_i \; 1. \]
 \[CC(\cap_k) = O(k) \quad [\text{Håstad Wigderson}] \]

- **Gap (Real) Inner Product:**
 \[x, y \in \mathbb{R}^n; |x|_2, |y|_2 = 1; \]
 \[GIP_\epsilon(x, y) = 1 \text{ if } \langle x, y \rangle \geq \epsilon; \quad CC(GIP_\epsilon) \]

Summary from

[Ghazi, Kamath, S.’16]
Uncertainty in Communication

- Overarching question: Are there communication mechanisms that can overcome uncertainty?

- What is uncertainty?

- This talk: Alice, Bob don’t share randomness perfectly; only approximately.
Rest of this talk

- **Model:** Imperfectly Shared Randomness

- **Positive results:** Coping with imperfectly shared randomness.

- **Negative results:** Analyzing weakness of imperfectly shared randomness.
Model: **Imperfectly Shared Randomness**

- Alice ← r; and Bob ← s where

 $(r, s) = \text{i.i.d. sequence of correlated pairs } (r_i, s_i)_i$;

 $r_i, s_i \in \{-1, +1\}; \mathbb{E}[r_i] = \mathbb{E}[s_i] = 0; \mathbb{E}[r_is_i] = \rho \geq 0$.

- Notation:
 - $isr_\rho(f) = \text{cc of } f \text{ with } \rho\text{-correlated bits}$.
 - $cc(f): \text{Perfectly Shared Randomness cc.} = isr_1(f)$
 - $priv(f): \text{cc with PRIVate randomness} = isr_0(f)$

- Starting point: for Boolean functions f

 - $cc(f) \leq isr_\rho(f) \leq priv(f) \leq cc(f) + \log n$
 - What if $cc(f) \ll \log n$? E.g. $cc(f) = O(1)$
Distill Perfect Randomness from ISR?

- Agreement Distillation:
 - Alice $\leftarrow r$; Bob $\leftarrow s$; (r, s) ρ-corr. unbiased bits
 - Outputs: Alice $\rightarrow u$; Bob $\rightarrow v$; $H_\infty(u), H_\infty(v) \geq k$
 - Communication = c bits;
 - What is max. prob. τ of agreement ($u = v$)?

- Well-studied in the literature!
 - [Ahlswede-Csiszar ‘70s]:
 \[\tau \rightarrow 1 \Rightarrow c = \Omega(k) \text{ (one-way)} \]
 - [Bogdanov-Mossel ‘2000s]: $c = 0 \Rightarrow \tau \leq \exp(-k)$
 - [Our work]: $\tau = \exp(-k + O(c))$ (two-way)

- Summary: Can’t distill randomness!
Results

- Model first studied by [Bavarian, Gavinsky, Ito’14] ("Independently and earlier").
 - Their focus: Simultaneous Communication; general models of correlation.
 - They show \(\text{isr}(\text{Equality}) = O(1) \) (among other things)

- Our Results:
 - Generally: \(cc(f) \leq k \Rightarrow \text{isr}(f) \leq 2^k \)
 - Converse: \(\exists f \text{ with } cc(f) \leq k \text{ and } \text{isr}(f) \geq 2^k \)
Equality Testing (our proof)

- Key idea: Think inner products.
 - Encode \(x \mapsto X = E(x); y \mapsto Y = E(y); X, Y \in \{-1, +1\}^N \)
 - \(x = y \Rightarrow \langle X, Y \rangle = N \)
 - \(x \neq y \Rightarrow \langle X, Y \rangle \leq N/2 \)

- Estimating inner products:
 - Building on sketching protocols ...
 - Alice: Picks Gaussians \(G_1, \ldots, G_t \in \mathbb{R}^N \),
 - Sends \(i \in [t] \) maximizing \(\langle G_i, X \rangle \) to Bob.
 - Bob: Accepts iff \(\langle G'_i, Y \rangle \geq 0 \)
 - Analysis: \(O_\rho(1) \) bits suffice if \(G \approx_\rho G' \)

Gaussian Protocol
General One-Way Communication

- **Idea:** All communication \(\leq \) Inner Products
- (For now: Assume one-way-cc(\(f \)) \(\leq k \))
 - For each random string \(R \)
 - Alice’s message = \(i_R \in [2^k] \)
 - Bob’s output = \(f_R(i_R) \) where \(f_R : [2^k] \rightarrow \{0,1\} \)
 - W.p. \(\geq \frac{2}{3} \) over \(R \), \(f_R(i_R) \) is the right answer.
General One-Way Communication

- **For each random string** R
 - Alice’s message = $i_R \in [2^k]$
 - Bob’s output = $f_R(i_R)$ where $f_R : [2^k] \rightarrow \{0,1\}$
 - W.p. $\geq \frac{2}{3}$, $f_R(i_R)$ is the right answer.

- **Vector representation:**
 - $i_R \mapsto x_R \in \{0,1\}^{2^k}$ (unit coordinate vector)
 - $f_R \mapsto y_R \in \{0,1\}^{2^k}$ (truth table of f_R).
 - $f_R(i_R) = \langle x_R, y_R \rangle$; Acc. Prob. $\propto \langle X, Y \rangle$; $X = (x_R)_R$; $Y = (y_R)_R$
 - Gaussian protocol estimates inner products of unit vectors to within $\pm \epsilon$ with $O_\rho \left(\frac{1}{\epsilon^2} \right)$ communication.
Two-way communication

- Still decided by inner products.

- Simple lemma:
 - $\exists K_A^k, K_B^k \subseteq \mathbb{R}^{2^k}$ convex, that describe private coin k-bit comm. strategies for Alice, Bob s.t. accept prob. of $\pi_A \in K_A^k, \pi_B \in K_B^k$ equals $\langle \pi_A, \pi_B \rangle$

- Putting things together:

 Theorem: $cc(f) \leq k \Rightarrow isr(f) \leq O_\rho(2^k)$
Main Technical Result: Matching lower bound

Theorem: There exists a (promise) problem f s.t.

- $cc(f) \leq k$
- $isr_{\rho}(f) \geq \exp(k)$

The Problem:

- Gap Sparse Inner Product (G-Sparse-IP).
- Alice gets \textbf{sparse} $x \in \{0,1\}^n$; $\text{wt}(x) \approx 2^{-k} \cdot n$
- Bob gets $y \in \{0,1\}^n$
- Promise: $\langle x, y \rangle \geq (.9)2^{-k} \cdot n$ or $\langle x, y \rangle \leq (.6)2^{-k} \cdot n$
- Decide which.
Protocol for G-Sparse-IP

- Note: Gaussian protocol takes $O(2^k)$ bits.
 - Need to get exponentially better.
- Idea: $x_i \neq 0 \Rightarrow y_i$ correlated with answer.
- Use (perfectly) shared randomness to find random index i s.t. $x_i \neq 0$.
- Shared randomness: i_1, i_2, i_3, \ldots uniform over $[n]$.
- Alice → Bob: smallest index j s.t. $x_{ij} \neq 0$.
- Bob: Accept if $y_{ij} = 1$
- Expect $j \approx 2^k$; $cc \leq k$.

G-Sparse-IP:

$x, y \in \{0, 1\}^n; \text{wt}(x) \approx 2^{-k} \cdot n$

Decide $\langle x, y \rangle \geq (.9) 2^{-k} \cdot n$
or $\langle x, y \rangle \leq (.6) 2^{-k} \cdot n$?
Lower Bound Idea

- **Catch**: \(\forall \text{Dist.}, \exists \text{Det. Protocol w. comm.} \leq k. \)
 - Need to fix strategy first, construct dist. later.

- **Main Idea**:
 - Protocol can look like G-Sparse-Inner-Product
 - But implies players can agree on common index to focus on ...
 - Agreement is hard
 - Protocol can ignore sparsity
 - Requires \(2^k \) bits
 - Protocol can look like anything!
 - Invariance Principle [MOO, Mossel ...]
Invariance Principle [MOO’08]

- **Informally:**
 - Analysis of prob. processes with bits often hard.
 - Analysis of related processes with Gaussian variables easy.
 - “Invariance Principle” – under sufficiently general conditions ... prob. of events “invariant” when switching from bits to Gaussian

Theorem: For every convex $K_1, K_2 \subseteq [-1,1]^\ell$

\[\exists \text{ transformations } T_1, T_2 \text{ s.t.} \]

if $f: \{0,1\}^n \rightarrow K_1$ and $g: \{0,1\}^n \rightarrow K_2$

have no common influential variable, then

$F = T_1f: \mathbb{R}^n \rightarrow K_1$ and $G = T_2g: \mathbb{R}^n \rightarrow K_2$ satisfy

$\mathbb{E}_{x,y}[\langle f(x), g(y) \rangle] \approx \mathbb{E}_{X,Y}[\langle F(X), G(Y) \rangle]$
Summarizing

- k bits of comm. with perfect sharing
 $\rightarrow 2^k$ bits with imperfect sharing.
- This is tight
- Invariance principle for communication
 - Agreement distillation
 - Low-influence strategies

G-Sparse-IP:
$x, y \in \{0, 1\}^n \land wt(x) \approx 2^{-k} \cdot n$
Decide $\langle x, y \rangle \geq (.9) \ 2^{-k} \cdot n$
or $\langle x, y \rangle \leq (.6) \ 2^{-k} \cdot n$?
Conclusions

- Imperfect agreement of context important.
 - Dealing with new layer of uncertainty.
 - Notion of scale (context LARGE)

- Many open directions+questions:
 - Imperfectly shared randomness:
 - One-sided error?
 - Does interaction ever help?
 - How much randomness?
 - More general forms of correlation?
Thank You!