Mathematical Theories of Communication:
Old and New

Madhu Sudan
Harvard University
Communication = What?

- **Today: Digital Communication**
 - i.e., Communicating bits/bytes/data ...
 - As opposed to “radio waves for sound”

- **Challenge? Communication can be ...**
 - ... expensive: (e.g., satellite with bounded energy to communicate)
 - ... noisy: (bits flipped, DVD scratched)
 - ... interactive: (complicates above further)
 - ... contextual (assumes you are running specific OS, IPvX)
Theory = Why?

- Why build theory and not just use whatever works?
 - Ad-hoc solutions work today, but will they work tomorrow?
 - Formulating problem allows comparison of solutions!
 - And some creative solutions might be surprisingly better than naïve!
 - Better understanding of limits.
 - What can not be achieved ...
Old? New?

- Why new theories? Were old ones not good enough?
 - Quite the opposite: Old ones were too good.
 - They provided right framework and took us from ground level to “orbit”!
 - And now we can explore all of “space” ... but new possibilities leads to new challenges.
Problem from the 1940s: Advent of digital age.

- Communication media are always noisy
 - But digital information less tolerant to noise!
Reliability by Repetition

- Can repeat (every letter of) message to improve reliability:

 WWW EEE AAA RRR EEE NNN OOO WWW ...

 ↓

 WXW EEA ARA SSR EEE NMN OOP WWW ...

- Elementary Reasoning:

 \[\begin{align*}
 \uparrow \text{repetitions} & \Rightarrow \downarrow \text{Prob. decoding error; but still +ve} \\
 \uparrow \text{length of transmission} & \Rightarrow \uparrow \text{expected # errors.}
 \end{align*}\]

- Combining above: Rate of repetition coding \(\rightarrow 0\) as length of transmission increases.

- Belief (pre1940):

 \[\begin{align*}
 \text{Rate of any scheme} & \rightarrow 0 \text{ as length} \rightarrow \infty
 \end{align*}\]
Shannon’s Theory [1948]

- Sender “Encodes” before transmitting
- Receiver “Decodes” after receiving

Encoder/Decoder arbitrary functions.

\[E : \{0,1\}^k \rightarrow \{0,1\}^n \]
\[D : \{0,1\}^n \rightarrow \{0,1\}^k \]

- Rate \(= \frac{k}{n} \);
- Requirement: \(m = D(E(m) + \text{error}) \) w. high prob.
- What are the best \(E, D \) (with highest Rate)?
Shannon’s Theorem

- If every bit is flipped with probability p:
 - Rate $\rightarrow 1 - H(p)$ can be achieved.
 - $H(p) \triangleq p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1-p}$
 - This is best possible.
- Examples:
 - $p = 0 \Rightarrow Rate = 1$
 - $p = \frac{1}{2} \Rightarrow Rate = 0$
 - Monotone decreasing for $p \in (0, \frac{1}{2})$
 - Positive rate for $p = 0.4999$; even if $k \rightarrow \infty$
Shannon’s contributions

- Far-reaching architecture:

- Profound analysis:
 - First (?) use of probabilistic method.

- Deep Mathematical Discoveries:
 - Entropy, Information, Bit?
Challenges post-Shannon

- Encoding/Decoding functions not “constructive”.
 - Shannon picked E at random, D brute force.
 - Consequence:
 - D takes time $\sim 2^k$ to compute (on a computer).
 - E takes time 2^{2^k} to find!

- Algorithmic challenge:
 - Find E, D more explicitly.
 - Both should take time $\sim k, k^2, k^3$... to compute
 - Solutions: 1948-2017
Chomsky: Theory of “Language”

- Formalized syntax in languages mathematically (with caveats).
 - Initially goal was to understand inter-human communication!
 - Structure behind languages
 - Implication on acquisition.
 - Major side-effect: Use of “context-free grammars” to specify programming languages!
 - Automated parsing, compiling, interpretation!
Modern Theories:

- Communication is interactive
 - E.g., "buying airline ticket online"
- Involve large inputs from either side:
 - Travel agent = vast portfolio of airlines+flights
 - Traveler = complex collection of constraints and preferences.
- Best protocol ≠ Travel agent sends brochure.
 ≠ Traveller sends entire list of constraints.
- How to model? What happens if errors happen? How well should context be shared?
The model (with shared randomness)

\[f : (x, y) \mapsto \Sigma \]

\[R = $$$ \]

\[CC(f) = \# \text{ bits exchanged by best protocol} \]

Usually studied for lower bounds. This talk: CC as +ve model.
Some short protocols!

- **Problem 1:** Alice \(x_1, \ldots, x_n \); Bob \(y_1, \ldots, y_n \);
- **Want to know:** \((x_1 - y_1) + \cdots + (x_n - y_n) \);
- **Solution:** Alice \(\rightarrow \) Bob: \(S \equiv x_1 + \cdots + x_n \)

 Bob \(\rightarrow \) Alice: \(S - (y_1 + \cdots + y_n) \);

- **Problem 2:** Alice \(x_1, \ldots, x_n \); Bob \(y_1, \ldots, y_n \);
- **Want to know:** \((x_1 - y_1)^2 + \cdots + (x_n - y_n)^2 \);
- **Solution?**
 - Deterministically: Needs \(n \) bits of communication.
 - Randomized: Say Alice+Bob \(\leftarrow r_1, r_2, \ldots, r_n \in \{-1, +1\} \) random.

 Alice \(\rightarrow \) Bob: \(S_1 = x_1^2 + \cdots + x_n^2; \quad S_2 = r_1 x_1 + \cdots r_n x_n \)

 Bob \(\rightarrow \) Alice: \(T_1 = y + \cdots + y; \quad T_2 = r_1 y_1 + \cdots r_n y_n \)

 Thm: \(\text{Exp} \ [S_1 + T_1 - 2S_2 T_2] = (x_1 - y_1)^2 + \cdots + (x_n - y_n)^2 \)
Application to Buying Air Tickets

- If we can express every flight and every user’s preference as \(n \) numbers
 - (commonly done in Machine Learning)
 - Then \#bits communicated \(\approx 2 \). description of final itinerary.
 - Only two rounds of communication!

- Challenge: Express user preferences as numbers!
 - Not yet there ... but soon your cellphones will do it!
Interaction + Errors: Schulman

- Consider distributed update of shared document.
- What if there are errors in interaction?
 - Error must be detected immediately?
 - Or else all future communication wasted.
 - But too early detection might lead to false alarms!

Typical interaction:
Server → User: Current state of document
User → Server: Update
Interactive Coding Schemes

- If bits are flipped with probability p what is the rate of communication?
- Limits still not precisely determined! But linear for $p \leq \frac{1}{8}$ (scales more like $1 - \sqrt{H(p)}$)
- Non-trivial mathematics! Some still not fully constructive
- ... surprising even given Shannon theory!
Sales Pitch + Intro

- Most of communication theory [a la Shannon, Hamming]:
 - Built around sender and receiver perfectly synchronized.
 - So large context (codes, protocols, priors) ignored.

- Most Human communication (also device-device)
 - ... does not assume perfect synchronization.
 - So context is relevant:
 - Qualitatively (receiver takes wrong action)
 - and Quantitatively
Aside: Contextual Proofs & Uncertainty

- Mathematical proofs assume large context.
 - “By some estimates a proof that 2+2=4 in ZFC would require about 20000 steps ... so we will use a huge set of axioms to shorten our proofs – namely, everything from high-school mathematics” [Lehman, Leighton, Meyer]

- Context shortens proofs. But context is uncertain!
 - What is “high school mathematics”
 - Is it a fixed set of axioms?
 - Or a set from which others can be derived?
 - Is the latter amenable to efficient reasoning?
 - What is efficiency with large context?
Sales Pitch + Intro

- Most of communication theory [a la Shannon, Hamming]:
 - Built around sender and receiver perfectly synchronized.
 - So large context (codes, protocols, priors) ignored.

- Most Human communication (also device-device)
 - ... does not assume perfect synchronization.
 - So context is relevant:
 - Qualitatively (receiver takes wrong action)
 - and Quantitatively (inputs are long!!)

- Theory? What are the problems?
 - Starting point = Shannon? Yao?
Communication Complexity

The model (with shared randomness)

\[f : (x, y) \mapsto \Sigma \]

\[R = $$ \]

Usually studied for lower bounds.
This talk: CC as +ve model.

\[CC(f) = \# \text{ bits exchanged} \]

by best protocol

\[f(x, y) \text{ w.p. } 2/3 \]
Aside: Easy CC Problems [Ghazi,Kamath,S’15]

Exist problems with large inputs and small communication?

- Equality testing:
 \[EQ(x, y) = 1 \iff x = y; \quad O(1) \quad \text{ Protocol: } \]

- Hamming distance:
 \[H_k(x, y) = 1 \iff \Delta(x, y) \leq k; \quad poly(k) \quad \text{ Protocol: } \]

- Small set intersection:
 \[\cap_k (x, y) = 1 \iff \text{wt}(x), \text{wt}(y) \leq k; \quad O(k) \quad \text{ Protocol: } \]

Unstated philosophical contribution of CC a la Yao:
Communication with a **focus** ("only need to determine \(f(x, y) \")
can be more effective (shorter than \(|x|, H(x), H(y), I(x; y) \ldots \))
Many possibilities. Ongoing effort.

Alice+Bob may have estimates of x and y

- More generally: x, y close (in some sense).
- Knowledge of f – function Bob wants to compute
 - may not be exactly known to Alice!
- Shared randomness
 - Alice + Bob may not have identical copies.
1. Compression

- **Classical compression**: Alice $\leftarrow P, m \sim P$; Bob $\leftarrow P$;
 - Alice \rightarrow Bob: $y = E_P(m)$; Bob $\hat{m} = D_P(y) \triangleq m$;
 - [Shannon]: $\hat{m} = m$; w. $\mathbb{E}_{m \sim P}[|E_P(m)|] \leq H(P) + 1$
 $H(P) \triangleq \mathbb{E}_{m \sim P}[-\log P(m)]$

- **Uncertain compression** [Juba, Kalai, Khanna, S.]
 - Alice $\leftarrow P, m \sim P$; Bob $\leftarrow Q$;
 - Alice \rightarrow Bob: $y = E_P(m)$; Bob $\hat{m} = D_Q(y) \triangleq m$;
 - $P, Q \Delta$-close: $\forall m |\log P(m) - \log Q(m)| \leq \Delta$
 - Can we get $\mathbb{E}_{m \sim P}[|E_P(m)|] \leq O(H(P) + \Delta)$?
 - [JKKS] – Yes – with shared randomness.
 - [Haramaty+S.] – Deterministically $O(H(P) + \log \log |\Omega|)$
Deterministic Compression: Challenge

- Say Alice and Bob have rankings of N players.
 - Rankings = bijections $\pi, \sigma : [N] \rightarrow [N]$
 - $\pi(i) =$ rank of i^{th} player in Alice’s ranking.
- Further suppose they know rankings are close.
 - $\forall i \in [N]: |\pi(i) - \sigma(i)| \leq 2.$
- Bob wants to know: Is $\pi^{-1}(1) = \sigma^{-1}(1)$
- How many bits does Alice need to send (non-interactively).
 - With shared randomness – $O(1)$
 - Deterministically?

With Elad Haramaty: $\tilde{O}(\log^* n)$
Compression as a proxy for language

- Information theoretic study of language?
- Goal of language: **Effective means of expressing information/action.**
- Implicit objective of language: **Make frequent messages short. Compression!**
- **Frequency = Known globally? Learned locally?**
 - If latter – every one can’t possibly agree on it;
 - Yet need to agree on language (mostly)!
 - Similar to problem of Uncertain Compression.
- **Studied formally in**
 - [Ghazi, Haramaty, Kamath, S. ITCS 17]
2. Imperfectly Shared Randomness

- Recall: Communication becomes more effective with randomness.
 - Identity, Hamming Distance, Small Set Intersection, Inner Product.

- How does performance degrade if players only share correlated variables:
 - E.g. Alice $\leftarrow r$; Bob $\leftarrow s$. $(r, s) = (r_i, t_i)_i$ i.i.d.
 $r_i, s_i \in \{-1, 1\}$; $\mathbb{E}[r_i] = \mathbb{E}[s_i] = 0$; $\mathbb{E}[r_is_i] = \rho \in (0, 1)$;

- [CGMS ’16]:
 - Comm. With perfect randomness = k
 \Rightarrow Comm. With imperfect randomness = $O_\rho(2^k)$
Imperfectly Shared Randomness

- **Easy (Complete) Problem:**
 - **Gap Inner Product:** $x, y \in \mathbb{R}^n$
 - $GIP_{c,s}(x, y) = 1$ if $\langle x, y \rangle \geq \epsilon \cdot |x|_2 \cdot |y|_2$;
 $= 0$ if $\langle x, y \rangle \leq 0$
 - Decidable with $O(\rho \left(\frac{1}{\epsilon^2} \right))$ (o.w.) communication

- **Hard Problem:**
 - **Sparse Gap Inner Product:** GIP on sparse x
 - $x \in \{0,1\}^n, y \in \{-1,1\}^n;$ $|x|_1 = 2\epsilon n$
 - Classical communication = $O \left(\log \frac{1}{\epsilon} \right)$ [uses sparsity]
 - No way to use sparsity with imperfect randomness.
3. Functional Uncertainty

- [Ghazi, Komargodski, Kothari, S. ‘16]
- Recall positive message of Yao’s model:
 - Communication can be brief, if Alice knows what function $f(x, y)$ Bob wants to compute.
- What if Alice only knows f approximately?
 - Can communication still be short?
The Model

- Recall Distributional Complexity:
 - \((x, y) \sim \mu; \) \(\text{error}_\mu(\Pi) \overset{\text{def}}{=} \Pr_{x,y \sim \mu} [f(x, y) \neq \Pi(x, y)] \)
 - Complexity: \(cc_{\mu, \epsilon}(f) \overset{\text{def}}{=} \min_{\Pi: \text{error}_\mu(\Pi) \leq \epsilon} \left\{ \max_{x,y} |\Pi(x, y)| \right\} \)

- Functional Uncertainty Model - I:
 - Adversary picks \(f, g \). Nature picks \((x, y) \sim \mu \)
 - Alice \(\leftarrow (f, x) \); Bob \(\leftarrow (g, y) \); Compute \(g(x, y) \)
 - Promise: \(\delta_\mu(f, g) \overset{\text{def}}{=} \Pr_{\mu} [f(x, y) \neq g(x, y)] \leq \delta_0 \)
 - Goal: Compute (any) \(\Pi(x, y) \) with \(\delta_\mu(g, \Pi) \leq \epsilon_1 \)
 - (just want \(\epsilon_1 \to 0 \) as \(\delta_0 \to 0 \))
 - If \((f, g) \) part of input; this is complexity of what?
Modelling Uncertainty

- Modelled by graph \mathcal{G} of possible inputs
- Protocols know \mathcal{G} but not (f, g)
- \[
 cc_{\mu, \epsilon}(\mathcal{G}) \overset{\text{def}}{=} \max_{(f, g) \in \mathcal{G}} \{cc_{\mu, \epsilon}(g)\}
\]
- \[
 \delta_{\mu}(\mathcal{G}) \overset{\text{def}}{=} \max_{(f, g) \in \mathcal{G}} \{\delta_{\mu}(f, g)\}
\]
- Uncertain error:
 \[
 \text{error}_{\mu, \mathcal{G}}(\Pi) \overset{\text{def}}{=} \max_{(f, g) \in \mathcal{G}} \{\Pr[\mu(g(x, y) \neq \Pi(f, g, x, y))]\}
 \]
- Uncertain complexity:
 \[
 Ucc_{\mu, \epsilon}(\mathcal{G}) \overset{\text{def}}{=} \min_{\Pi: \text{error}(\Pi) \leq \epsilon} \{\max_{f, g, x, y} \{||\Pi(f, g, x, y)||\}\}
 \]
- Compare $cc_{\mu, \epsilon_0}(\mathcal{G})$ vs. $Ucc_{\mu, \epsilon_1}(\mathcal{G})$
 want $\epsilon_1 \to 0$ as $\epsilon_0, \delta_{\mu}(\mathcal{G}) \to 0$
Main Results

- **Thm 1**: (-ve) \(\exists \mathcal{G}, \mu \) s.t. \(\delta_\mu(\mathcal{G}) = o(1); \text{cc}_{\mu, o(1)}(\mathcal{G}) = 1; \)

but \(U\text{cc}_{\mu, 1}(\mathcal{G}) = \Omega(\sqrt{n}) \); (\(n = |x| = |y| \))

- **Thm 2**: (+ve) \(\forall \mathcal{G}, \mu, \) product \(U\text{cc}_{\mu, \epsilon_1}(\mathcal{G}) = O\left(\text{cc}_{\mu, \epsilon_0}^{\text{oneway}}(\mathcal{G})\right) \)

where \(\epsilon_1 \to 0 \) as \(\epsilon_0, \delta_\mu(\mathcal{G}) \to 0 \)

- **Thm 2'**: (+ve) \(\forall \mathcal{G}, \mu, \)

\(U\text{cc}_{\mu, \epsilon_1}(\mathcal{G}) = O\left(\text{cc}_{\mu, \epsilon_0}^{\text{oneway}}(\mathcal{G}) \cdot (1 + I(x; y))\right) \)

where \(\epsilon_1 \to 0 \) as \(\epsilon_0, \delta_\mu(\mathcal{G}) \to 0 \)

and \(I(x; y) = \text{Mutual Information between } x; y \)

Protocols are not continuous wrt the function being computed.
Details of Negative Result

- $\mu: x \sim U(\{0,1\}^n); y = Noisy(x) ; \Pr[x_i \neq y_i] = 1/\sqrt{n}$;
- $G = \{((\oplus_S (x \oplus y), \oplus_T (x \oplus y))) | |S \oplus T| = o(\sqrt{n})\}$
 - $\oplus_S (z) = \oplus_{i \in S} z_i$
- Certain Comm: Alice \rightarrow Bob: $\oplus_T (x)$
- $\delta_\mu (G) = \max_{S,T} \{\Pr[\oplus_S (x \oplus y) \neq \oplus_T (x \oplus y)]\}$

 $$= \max_{U: |U| = o(\sqrt{n})} \left\{ \Pr_{z \sim \text{Bernoulli}(\frac{1}{\sqrt{n}})^n} [\oplus_U (z) = 1] \right\} = o(1)$$
- Uncertain Lower bound:
 - Standard $cc_{\mu,\varepsilon} (F)$ where $F((S, x); (T, y)) = \oplus_T (x \oplus y)$;
 - Lower bound obtain by picking (S, T) randomly:
 - S uniform; T noisy copy of S
Positive result (Thm. 2)

- Consider comm. Matrix Protocol for \(g \) partitions matrix in \(2^k \) blocks.
- Bob wants to know which block?
- Common randomness:
 \[y_1, \ldots, y_m \]
- Alice → Bob:
 \[f(x, y_1) \ldots f(x, y_m) \]
- Bob (whp) recognizes block and uses it.
- \(m = O(k) \) suffices.
Analysis Details

1. W.p. $1 - \sqrt{\epsilon}$, $\exists j$ s.t. $\delta \left(g(x_j; \cdot), g(x; \cdot) \right) \leq \sqrt{\epsilon}$
 - Main idea: If $\Pi g(x) = \Pi g(x_j)$ then w.h.p. $\delta \left(g(x_j; \cdot), g(x; \cdot) \right) \leq \sqrt{\epsilon}$

2. If $j \in [K]$ s.t. $\delta \left(g(x_j; \cdot), g(x; \cdot) \right) \geq 2\sqrt{\epsilon}$ then $\Pr[j$ is selected$] = \exp(-m)$.
 - But Step 2. works only if $y_i \sim \mu_x$
Thm 2’: Main Idea

- Now can not sample \(y_1, \ldots, y_m \) independent of \(x \)
- Instead use [HJMR’07] to sample \(y_i \sim \mu_x \)
 - Each sample costs \(I(x; y) \)
- Analysis goes through ...
4. Contextual Proofs and Uncertainty?

- Scenario: Alice + Bob start with axioms A: subset of clauses on X_1, \ldots, X_n
- Alice wishes to prove $A \Rightarrow C$ for some clause C
- But proof $\Pi : A \Rightarrow C$ may be long ($\sim 2^{\sqrt{n}}$)
- Context to rescue: Maybe Alice + Bob share context $D \leftrightarrow A$; and contextual proof $\Pi' : D \Rightarrow C$ short ($\text{poly}(n)$)
- Uncertainty: Alice’s Context $D_A \neq D_B$ (Bob’s context)
 - Alice writes proof $\Pi' : D_A \Rightarrow C$
 - When can Bob verify Π' given D_B?

- Scenario: Alice + Bob start with axioms A: subset of clauses on X_1, \ldots, X_n
- Alice wishes to prove $A \Rightarrow C$ for some clause C
 - Alice writes proof $\Pi': D_A \Rightarrow C$
 - When can Bob verify Π' given D_B?
 - Surely if $D_A \subseteq D_B$
 - What if $D_A \setminus D_B = \{C'\}$ and $\Pi'': D_B \Rightarrow C'$ is one step long?
 - Can Bob still verify $\Pi': D_A \Rightarrow C$ in $\text{poly}(n)$ time?
 - Need feasible data structure that allows this!
 - None known to exist. Might be harder than Partial Match Retrieval ...
Summarizing

- Perturbing “common information” assumptions in Shannon/Yao theory, lead to many changes.
 - Some debilitating
 - Some not; but require careful protocol choice.
- In general: Communication protocols are not continuous functions of the common information.
- Uncertain model (\mathcal{G}) needs more exploration!
- Some open questions from our work:
 - Tighten the gap: $cc(f) \cdot I$ vs. $cc(f) + \sqrt{I}$
 - Multi-round setting? Two rounds?
 - What if randomness & function imperfectly shared? [Prelim. Results in [Ghazi+S’17]]
Contextual Communication & Uncertainty
Communication Complexity: Yao

The model \((\text{with shared randomness})\)

\[x \quad f : (x, y) \mapsto \Sigma \]

\[R = $$$ \]

\[CC(f) = \# \text{ bits exchanged by best protocol} \]

\[f(x, y) \quad \text{w.p. 2/3} \]
Boole’s “modest” ambition

“The design of the following treatise is to investigate the fundamental laws of those operations of the mind by which reasoning is performed; to give expression to them in the symbolical language of a Calculus, and upon this foundation to establish the science of Logic and construct its method; to make that method itself the basis of a general method for the application of the mathematical doctrine of Probabilities; and, finally, to collect from the various elements of truth brought to view in the course of these inquiries some probable intimations concerning the nature and constitution of the human mind.” [G.Boole, “On the laws of thought ...” p.1]
Sales Pitch + Intro

- Most of communication theory [a la Shannon, Hamming]:
 - Built around sender and receiver perfectly synchronized.
 - So large context (codes, protocols, priors) ignored.

- Most Human communication (also device-device)
 - ... does not assume perfect synchronization.
 - So context is relevant:
 - Qualitatively (receiver takes wrong action)
 - and Quantitatively
Aside: Contextual Proofs & Uncertainty

- Mathematical proofs assume large context.
 - “By some estimates a proof that 2+2=4 in ZFC would require about 20000 steps ... so we will use a huge set of axioms to shorten our proofs – namely, everything from high-school mathematics” [Lehman, Leighton, Meyer]

- Context shortens proofs. But context is uncertain!
 - What is “high school mathematics”
 - Is it a fixed set of axioms?
 - Or a set from which others can be derived?
 - Is the latter amenable to efficient reasoning?
 - What is efficiency with large context?
Sales Pitch + Intro

- Most of communication theory [a la Shannon, Hamming]:
 - Built around sender and receiver perfectly synchronized.
 - So large context (codes, protocols, priors) ignored.

- Most Human communication (also device-device)
 - ... does not assume perfect synchronization.
 - So context is relevant:
 - Qualitatively (receiver takes wrong action)
 - and Quantitatively (inputs are long!!)

- Theory? What are the problems?
 - Starting point = Shannon? Yao?
The model (with shared randomness)

\[f : (x, y) \mapsto \Sigma \]

Usually studied for lower bounds. This talk: CC as +ve model.

\[CC(f) = \# \text{ bits exchanged by best protocol} \]

\[f(x, y) \text{ w.p. } 2/3 \]
Aside: Easy CC Problems [Ghazi, Kamath, S’15]

Exist Problems with large inputs and small communication?

- Equality testing:
 \[EQ(x, y) = 1 \iff x = y; \quad \mathcal{C}(EQ) = O(1) \]

- Hamming distance:
 \[H_k(x, y) = 1 \iff \Delta(x, y) \leq k; \quad \mathcal{C}(H_k) = O(k \log k) \] [Huang et al.]

- Small set intersection:
 \[\cap_k(x, y) = 1 \iff \text{wt}(x), \text{wt}(y) \leq k \& \exists i: \forall s \cdot R \cdot x_i = y_i = 1; \quad \mathcal{C}(\cap_k) = O(k) \] [Håstad, Wigderson]

- Gap (Real) Inner Product:
 \[x, y \in \mathbb{R}^n; \quad x^2, y^2 = 1; \quad \mathcal{G}(x, y) = 1 \iff x, y \geq c; \quad = 0 \iff x, y \leq s; \quad \mathcal{C}(\mathcal{G}) = O(1/c - s) \] [Alon, Matias, Szegedy]

Protocol:
Fix ECC \(E : \{0,1\}^n \rightarrow \{0,1\}^N \)

Use common randomness to hash \([n] \rightarrow \mathcal{P}(k)\)

\[x = (x_1, \ldots, x_n), \quad y = (y_1, \ldots, y_n) \]

\[\langle x, y \rangle \triangleq \sum_i x_i y_i \]

Unstated philosophical contribution of CC a la Yao:

Communication with a focus ("only need to determine \(f(x, y) \)) can be more effective (shorter than \(|x|, H(x), H(y), I(x; y) \ldots \))
Modelling Shared Context + Imperfection

- Many possibilities. Ongoing effort.
- Alice+Bob may have estimates of x and y.
 - More generally: x, y close (in some sense).
- Knowledge of f – function Bob wants to compute
 - may not be exactly known to Alice!
- Shared randomness
 - Alice + Bob may not have identical copies.
1. Compression

- **Classical compression**: Alice $\leftarrow P, m \sim P$; Bob $\leftarrow P$;
 - Alice \rightarrow Bob: $y = E_P(m)$; Bob $\hat{m} = D_P(y) \approx m$;
 - [Shannon]: $\hat{m} = m$; w. $\mathbb{E}_{m \sim P}[|E_P(m)|] \leq H(P) + 1$
 \[H(P) \equiv \mathbb{E}_{m \sim P}[-\log P(m)] \]

- **Uncertain compression** [Juba,Kalai,Khanna,S.]
 - Alice $\leftarrow P, m \sim P$; Bob $\leftarrow Q$;
 - Alice \rightarrow Bob: $y = E_P(m)$; Bob $\hat{m} = D_Q(y) \approx m$;
 - $P, Q \Delta$-close: $\forall m |\log P(m) - \log Q(m)| \leq \Delta$
 - Can we get $\mathbb{E}_{m \sim P}[|E_P(m)|] \leq O(H(P) + \Delta)$?
 - [JKKS] – Yes – with shared randomness. Universe
 - [Haramaty+S.] – Deterministically $O(H(P) + \log \log |\Omega|)$
Deterministic Compression: Challenge

- Say Alice and Bob have rankings of N players.
 - Rankings = bijections $\pi, \sigma : [N] \to [N]$
 - $\pi(i)$ = rank of i^{th} player in Alice’s ranking.
- Further suppose they know rankings are close.
 - $\forall i \in [N] : |\pi(i) - \sigma(i)| \leq 2$.
- Bob wants to know: Is $\pi^{-1}(1) = \sigma^{-1}(1)$
- How many bits does Alice need to send (non-interactively).
 - With shared randomness – $O(1)$
 - Deterministically?
 - With Elad Haramaty: $\tilde{O}(\log^* n)$
Compression as a proxy for language

- Information theoretic study of language?
- Goal of language: Effective means of expressing information/action.
- Implicit objective of language: Make frequent messages short. Compression!
- Frequency = Known globally? Learned locally?
 - If latter – every one can’t possibly agree on it;
 - Yet need to agree on language (mostly)!
 - Similar to problem of Uncertain Compression.
 - Studied formally in
 [Ghazi, Haramaty, Kamath, S. ITCS 17]
2. Imperfectly Shared Randomness

- Recall: Communication becomes more effective with randomness.
 - Identity, Hamming Distance, Small Set Intersection, Inner Product.
- How does performance degrade if players only share correlated variables:
 - E.g. Alice $\leftarrow r$; Bob $\leftarrow s$. $(r, s) = (r_i, t_i)_i$ i.i.d.
 - $r_i, s_i \in \{-1, 1\}$; $\mathbb{E}[r_i] = \mathbb{E}[s_i] = 0$; $\mathbb{E}[r_is_i] = \rho \in (0,1)$;
 - [CGMS ’16]:
 - Comm. With perfect randomness $= k$
 - \Rightarrow Comm. With imperfect randomness $= O_\rho(2^k)$
Imperfectly Shared Randomness

Easy (Complete) Problem:
- **Gap Inner Product:** \(x, y \in \mathbb{R}^n \)
- \(GIP_{c,s}(x, y) = 1 \text{ if } \langle x, y \rangle \geq \epsilon \cdot |x|_2 \cdot |y|_2; \)
 \(= 0 \text{ if } \langle x, y \rangle \leq 0 \)
- Decidable with \(O_\rho \left(\frac{1}{\epsilon^2} \right) \) (o.w.) communication

Hard Problem:
- **Sparse Gap Inner Product:** \(GIP \) on sparse \(x \)
 - \(x \in \{0,1\}^n, y \in \{-1,1\}^n; \ |x|_1 = 2\epsilon n \)
- Classical communication = \(O \left(\log \frac{1}{\epsilon} \right) \) [uses sparsity]
- No way to use sparsity with imperfect randomness.
3. Functional Uncertainty

- [Ghazi, Komargodski, Kothari, S. ‘16]
- Recall positive message of Yao’s model:
 - Communication can be brief, if Alice knows what function $f(x, y)$ Bob wants to compute.
- What if Alice only knows f approximately?
 - Can communication still be short?
The Model

- Recall Distributional Complexity:
 - $(x, y) \sim \mu$; \(\text{error}_\mu(\Pi) \stackrel{\text{def}}{=} \Pr_{x,y \sim \mu} [f(x, y) \neq \Pi(x, y)] \)
 - Complexity: \(cc_{\mu, \epsilon}(f) \stackrel{\text{def}}{=} \min_{\Pi : \text{error}_\mu(\Pi) \leq \epsilon} \{ \max_{x,y} \{|\Pi(x, y)|\} \} \)

- Functional Uncertainty Model - I:
 - Adversary picks \(f, g \). Nature picks \((x, y) \sim \mu \)
 - Alice \(\leftarrow (f, x) \); Bob \(\leftarrow (g, y) \); Compute \(g(x, y) \)
 - Promise: \(\delta_\mu(f, g) \stackrel{\text{def}}{=} \Pr_{\mu} [f(x, y) \neq g(x, y)] \leq \delta_0 \)
 - Goal: Compute (any) \(\Pi(x, y) \) with \(\delta_\mu(g, \Pi) \leq \epsilon_1 \)
 - (just want \(\epsilon_1 \to 0 \) as \(\delta_0 \to 0 \))
 - If \((f, g) \) part of input; this is complexity of what?
Modelling Uncertainty

- Modelled by graph \mathcal{G} of possible inputs
- Protocols know \mathcal{G} but not (f, g)

\[
cc_{\mu, \epsilon}(\mathcal{G}) \overset{\text{def}}{=} \max_{(f, g) \in \mathcal{G}} \{cc_{\mu, \epsilon}(g)\}
\]

\[
\delta_{\mu}(\mathcal{G}) \overset{\text{def}}{=} \max_{(f, g) \in \mathcal{G}} \{\delta_{\mu}(f, g)\}
\]

Uncertain error:

\[
error_{\mu, \mathcal{G}}(\Pi) \overset{\text{def}}{=} \max_{(f, g) \in \mathcal{G}} \{\Pr[\mu(g(x, y) \neq \Pi(f, g, x, y))]\}
\]

Uncertain complexity:

\[
Ucc_{\mu, \epsilon}(\mathcal{G}) \overset{\text{def}}{=} \min_{\Pi: error(\Pi) \leq \epsilon} \{\max_{f, g, x, y} \{|\Pi(f, g, x, y)|\}\}
\]

Compare $cc_{\mu, \epsilon_0}(\mathcal{G})$ vs. $Ucc_{\mu, \epsilon_1}(\mathcal{G})$

Want $\epsilon_1 \to 0$ as $\epsilon_0, \delta_{\mu}(\mathcal{G}) \to 0$
Main Results

- **Thm 1**: (-ve) \(\exists \mathcal{G}, \mu \) s.t. \(\delta_\mu (\mathcal{G}) = o(1); cc_{\mu,o(1)}(\mathcal{G}) = 1 \); but \(Ucc_{\mu,1}(\mathcal{G}) = \Omega(\sqrt{n}) \); (\(n = |x| = |y| \))

- **Thm 2**: (+ve) \(\forall \mathcal{G} \), product \(\mu \)

\[
Ucc_{\mu,\varepsilon_1}(\mathcal{G}) = O \left(cc_{\mu,\varepsilon_0}^{oneway}(\mathcal{G}) \right)
\]

where \(\varepsilon_1 \to 0 \) as \(\varepsilon_0, \delta_\mu(\mathcal{G}) \to 0 \)

- **Thm 2’**: (+ve) \(\forall \mathcal{G}, \mu \)

\[
Ucc_{\mu,\varepsilon_1}^{oneway}(\mathcal{G}) = O \left(cc_{\mu,\varepsilon_0}^{oneway}(\mathcal{G}) \cdot (1 + I(x;y)) \right)
\]

where \(\varepsilon_1 \to 0 \) as \(\varepsilon_0, \delta_\mu(\mathcal{G}) \to 0 \)

and \(I(x;y) = \) Mutual Information between \(x; y \)

Protocols are not continuous wrt the function being computed
Details of Negative Result

- $\mu: x \sim U(\{0,1\}^n); y = Noisy(x) ; \Pr[x_i \neq y_i] = 1/\sqrt{n} ;$
- $G = \{(\bigoplus_S (x \bigoplus y), \bigoplus_T (x \bigoplus y))| |S \bigoplus T| = o(\sqrt{n})\}$
 - $\bigoplus_S (z) = \bigoplus_{i \in S} z_i$
- Certain Comm: Alice \rightarrow Bob: $\bigoplus_T (x)$
- $\delta_\mu(G) = \max_{S,T} \{\Pr[x \bigoplus_S (x \bigoplus y) \neq \bigoplus_T (x \bigoplus y)]\}$
 $$= \max_{U: |U| = o(\sqrt{n})} \left\{ \Pr_{z \sim \text{Bernoulli}(1/\sqrt{n})^n} \left[\bigoplus_U (z) = 1 \right] \right\} = o(1)$$
- Uncertain Lower bound:
 - Standard $cc_{\mu,\varepsilon}(F)$ where $F((S, x); (T, y)) = \bigoplus_T (x \bigoplus y)$;
 - Lower bound obtain by picking (S, T) randomly:
 - S uniform; T noisy copy of S
Positive result (Thm. 2)

- Consider comm. Matrix Protocol for g partitions matrix in 2^k blocks
- Bob wants to know which block?
- Common randomness: y_1, \ldots, y_m
- Alice \rightarrow Bob: $f(x, y_1) \ldots f(x, y_m)$
- Bob (whp) recognizes block and uses it.
- $m = O(k)$ suffices.

“CC preserved under uncertainty for one-way communication if $x \perp y$”
Analysis Details

1. W.p. $1 - \sqrt{\epsilon}$, $\exists j$ s.t. $\delta \left(g(x_j, \cdot), g(x, \cdot) \right) \leq \sqrt{\epsilon}$

 Main idea: If $\Pi g(x) = \Pi g(x_j)$ then w.h.p.

 $\delta \left(g(x_j, \cdot), g(x, \cdot) \right) \leq \sqrt{\epsilon}$

2. If $j \in [K]$ s.t. $\delta \left(g(x_j, \cdot), g(x, \cdot) \right) \geq 2\sqrt{\epsilon}$ then

 $\Pr[j \text{ is selected}] = \exp(-m)$.

 But Step 2. works only if $y_i \sim \mu_x$
Thm 2’: Main Idea

- Now cannot sample \(y_1, \ldots, y_m\) independent of \(x\)
- Instead use [HJMR’07] to sample \(y_i \sim \mu_x\)
 - Each sample costs \(I(x; y)\)

- Analysis goes through …
4. Contextual Proofs and Uncertainty?

- Scenario: Alice + Bob start with axioms A: subset of clauses on X_1, \ldots, X_n
- Alice wishes to prove $A \Rightarrow C$ for some clause C
- But proof $\forall: A \Rightarrow C$ may be long ($\sim 2\sqrt{n}$)
- Context to rescue: Maybe Alice + Bob share context $D \iff A$; and contextual proof $\forall': D \Rightarrow C$ short ($\text{poly}(n)$)
- Uncertainty: Alice’s Context $D_A \neq D_B$ (Bob’s context)
 - Alice writes proof $\forall': D_A \Rightarrow C$
 - When can Bob verify \forall' given D_B?

- Scenario: Alice + Bob start with axioms A: subset of clauses on X_1, \ldots, X_n
- Alice wishes to prove $A \Rightarrow C$ for some clause C
 - Alice writes proof $\Pi': D_A \Rightarrow C$
 - When can Bob verify Π' given D_B?
 - Surely if $D_A \subseteq D_B$
 - What if $D_A \setminus D_B = \{C'\}$ and $\Pi'': D_B \Rightarrow C'$ is one step long?
 - Can Bob still verify $\Pi': D_A \Rightarrow C$ in $\text{poly}(n)$ time?
 - Need feasible data structure that allows this!
 - None known to exist. Might be harder than Partial Match Retrieval ...
Summarizing

- Perturbing “common information” assumptions in Shannon/Yao theory, lead to many changes.
 - Some debilitating
 - Some not; but require careful protocol choice.
- In general: Communication protocols are not continuous functions of the common information.
- Uncertain model (\mathcal{G}) needs more exploration!
- Some open questions from our work:
 - Tighten the gap: $cc(f) \cdot I$ vs. $cc(f) + \sqrt{I}$
 - Multi-round setting? Two rounds?
 - What if randomness & function imprecfectly shared? [Prelim. Results in [Ghazi+S’17]]
Thank You!