General Strong Polarization

Madhu Sudan
Harvard University

Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo)
Shannon and Channel Capacity

- Shannon ['48]: For every (noisy) channel of communication, \(\exists \) capacity \(C \) s.t. communication at rate \(R < C \) is possible and \(R > C \) is not.
 - Needs lot of formalization – omitted.

- Example:
 - Acts independently on bits
 - Capacity = \(1 - H(p) \); \(H(p) \) = binary entropy!
 - \(H(p) = p \cdot \log \frac{1}{p} + (1 - p) \cdot \log \frac{1}{1-p} \)
“Achieving” Channel Capacity

- Commonly used phrase. Many mathematical interpretations.
- Some possibilities:
 - How small can n be?
 - Get $R > C - \epsilon$ with polytime algorithms?

 Shannon ‘48: $n = O(C - R)^{-2}$

 Forney ‘66: $\text{time} = \text{poly}(n, 2^{1/(\epsilon^2)})$

- [Luby et al.’95] Make running time $\text{poly}\left(\frac{1}{\epsilon}\right)$?

- Open till 2008
- Arikan’08: Invented “Polar Codes” ...
- Final resolution: Guruswami+Xia’13, Hassani+Alishahi+Urbanke’13 – Strong analysis
Context for today’s talk

- [Arikan’08]: General class of codes.
- [GX’13, HAU’13]: One specific code within.

Why?

- Bottleneck: Strong Polarization
 - Arikan et al.: General class polarizes
 - [GX, HAU]: Specific code polarizes strongly!

This work/talk:

- Introduce Local Polarization
- Local \Rightarrow Strong Polarization
- Thm: All known codes that polarize also polarize strongly!
This talk:

- What are Polar Codes
- “Local vs. Global” (Strong) Polarization
- Analysis of Polarization
Lesson 0: Compression ⇒ Coding

- **Linear Compression Scheme:**
 - \((H, D)\) for compression scheme for \(\text{bern}(p)^n\) if
 - Linear map \(H: \mathbb{F}_2^n \rightarrow \mathbb{F}_2^m\)
 - \(\Pr_{Z \sim \text{bern}(p)^n}[D(H \cdot Z) \neq Z] \leq \varepsilon\)
 - Hopefully \(\frac{m}{n} \rightarrow H(p)\)

- **Compression ⇒ Coding**
 - Let \(H^\perp\) be such that \(H \cdot H^\perp = 0\);
 - Encoder: \(X \mapsto H^\perp \cdot X\)
 - Error-Corrector: \(Y = H^\perp \cdot X + \eta \mapsto Y - D(H \cdot Y) =_{w.p.} (1 - \varepsilon) H^\perp \cdot X\)
Question: How to compress?

Arikan’s key idea:

- **Start with** 2×2 “Polarization Transform”:
 $$(U, V) \rightarrow (U + V, V)$$

- **Invertible** – so does nothing?

- **If** U, V independent,
 - then $U + V$ “more random” than either
 - $V \mid U + V$ “less random” than either

- **Iterate** (ignoring conditioning)

 - End with bits that are completely random, or completely determined (by others).
 - Output “totally random part” to get compression!
Information Theory Basics

- **Entropy:**
 - **Defn:** for random variable \(X \in \Omega \),
 \[
 H(X) = \sum_{x \in \Omega} p_x \log \frac{1}{p_x} \quad \text{where} \quad p_x = \Pr[X = x]
 \]
 - **Bounds:** \(0 \leq H(X) \leq \log |\Omega| \)

- **Conditional Entropy**
 - **Defn:** for jointly distributed \((X,Y) \)
 \[
 H(X|Y) = \sum_{y} p_Y H(X|Y = y)
 \]
 - **Chain Rule:** \(H(X,Y) = H(X) + H(Y|X) \)
 - **Conditioning does not increase entropy:** \(H(X|Y) \leq H(X) \)
 - **Equality \iff Independence:** \(H(X|Y) = H(X) \iff X \perp Y \)

August 11, 2017
IITB: General Strong Polarization
Iteration by Example:

- \((A, B, C, D) \rightarrow (A + B + C + D, B + D, C + D, D)\)
- \((E, F, G, H) \rightarrow (E + F + G + H, F + H, G + H, H)\)
Summary: Iterating t times yields $n \times n$-polarizing transform for $n = 2^t$:

- $(Z_1, ..., Z_n) \rightarrow (W_1, ..., W_n) \rightarrow W_S$ ($|S| \approx H(p) \cdot n$)

Encoding/Compression: Clearly poly time.

Decoding/Decompression:

- “Successive cancellation decoder”: implementable in poly time.
- Can compute $\Pr_{Z \sim \text{bern}(p)}[W_i = 1 \mid W_{<i}]$ recursively
- Can reduce both run times to $O(n \log n)$
- Only barrier: Determining S
- Resolved by [Tal-Vardy‘13]
Analysis: The Polarization martingale

- **Martingale:** Sequence of r.v., $X_0, X_1, ...$
 - $\forall i, x_0, ..., x_{i-1}, \ E[X_i|x_0, ..., x_{i-1}] = x_{i-1}$

- **Polarization martingale:**
 - $X_i = \text{Conditional entropy of random output at } ith \text{ stage.}$

- **Why martingale?**
 - At ith stage two inputs take $(U, A); (V, B)$
 - Output = $(U + V, A \cup B)$ and $(V, A \cup B \cup U + V)$
 - Input entropies = x_{i-1} \quad ($H(U|A) = H(V|B) = x_{i-1}$)
 - \Rightarrow Output entropies average to x_{i-1}
 \[H(U + V|A,B) + H(V|A,B,U + V) = 2x_{i-1} \]
Quantitative issues

- How “quickly” does this martingale converge? (λ)
- How “well” does it converge? (ε)
- Formally, want:
 \[\Pr [X_t \in (\lambda, 1 - \lambda)] \leq \varepsilon \]

- ε: Gives gap to capacity
- λ: Governs decoding failure $\approx n \cdot \sqrt{\lambda}$
- Reminder: $n = 2^t$
- For useable code, need: $\lambda \ll 4^{-t}$
- For poly($\frac{1}{\varepsilon}$) block length, need: $\varepsilon \leq \alpha^t$, $\alpha < 1$
(Regular) Polarization:
\[\forall \gamma > 0, \quad \lim_{t \to \infty} \{ \Pr[X_t \in (\gamma^t, 1 - \gamma^t)] \} \to 0. \]

Strong Polarization:
\[\forall \gamma > 0 \exists \alpha > 0 \forall t, \quad \Pr[X_t \in (\gamma^t, 1 - \gamma^t)] \leq \alpha^t \]

Both “global” properties (large \(t \) behavior)

Construction yields: Local Property

How does \(X_i \) relate to \(X_{i-1} \)?

Local vs. Global Relationship?

Regular polarization well understood.

Strong understood only \((U, V) \mapsto (U + V, V)\)

What about \((U, V, W) \mapsto (U + V, V, W)\)?, more generally?
General Polarization

- Basic underlying ingredient \(M \in \mathbb{F}_2^{k \times k} \)
 - Local polarization step: Pick \((U_j, A_j)_{j \in [k]}\) i.i.d.
 - One step: generate \((L_1, \ldots, L_k) = M \cdot (U_1, \ldots, U_k)\)
 - \(X_{i-1} = H(U_j | \cup_\ell A_\ell, U_{<j}) = H(U_j | A_j)\)
 - \(X_i = H(L_j | \cup_\ell A_\ell, L_{<j})\)

- Examples
 - \(H_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} ; \ H'_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}\)

- Which matrices polarize? Strongly?
Mixing matrices

- Observation 1: Identity matrix does not polarize.
- Observation 1’: Upper triangular matrix does not polarize.
- Observation 2: (Row) permutation of non-polarizing matrix does not polarize!
 - Corresponds to permuting (U_1, \ldots, U_k)
- Definition: M mixing if no row permutation is upper-triangular.
- [KSU]: M mixing ⇒ martingale polarizes.
- [Our main theorem]: M mixing ⇒ martingale polarizes strongly.
Key Concept: Local (Strong) Polarization

- **Martingale** X_0, X_1, \ldots **locally polarizes** if it exhibits
 - **Variance in the middle:**
 \[\forall \tau > 0 \exists \sigma > 0, \quad \text{Var}[X_i \mid X_{i-1} \in (\tau, 1-\tau)] > \sigma \]
 - **Suction at the end:**
 \[\exists \theta > 0 \forall c < \infty, \exists \tau > 0 \quad \Pr\left[X_i < \frac{X_{i-1}}{c} \mid X_{i-1} \leq \tau \right] \geq \theta \]
 (similarly with $1 - X_i$)

- **Definition local:** compares X_i with X_{i-1}

- **Implications global:**
 - **Thm 1:** Local Polarization \Rightarrow Strong Polarization.
 - **Thm 2:** Mixing matrices \Rightarrow Local Polarization.
Mixing Matrices ⇒ Local Polarization

2 × 2 case:

- Ignoring conditioning, we have

\[
H(p) \to \begin{cases}
 H(2p(1 - p)) & \text{w.p. } \frac{1}{2} \\
 2H(p) - H(2p(1 - p)) & \text{w.p. } \frac{1}{2}
\end{cases}
\]

- Variance, Suction ⇐ Taylor series for \(\log(.) \) ...

k × k case:

- Reduction to 2 × 2 case: \(\frac{1}{2} \) probs. →\(\frac{1}{k} \)
Local ⇒ (Global) Strong Polarization

Step 1: Medium Polarization:

- \(\exists \alpha, \beta < 1 \Pr[X_t \in (\beta^t, 1 - \beta^t)] \leq \alpha^t \)

Proof: Potential \(\Phi_t = \mathbb{E} [\min\{ \sqrt{X_t}, \sqrt{1-X_t} \}] \)

- Variance+Suction ⇒ \(\exists \eta < 1 \text{ s.t. } \Phi_t \leq \eta \cdot \phi_{t-1} \)

(Aside: Why \(\sqrt{X_t} \)? Clearly \(X_t \) won’t work. And \(X_t^2 \) increases!)

\[\Rightarrow \Phi_t \leq \eta^t \Rightarrow \Pr[X_t \in (\beta^t, 1 - \beta^t)] \leq \left(\frac{\eta}{\beta} \right)^t \]
Local ⇒ (Global) Strong Polarization

- **Step 1: Medium Polarization:**
 - \(\exists \alpha, \beta < 1 \Pr[X_t \in (\beta^t, 1 - \beta^t)] \leq \alpha^t \)

- **Step 2: Medium Polarization + t - more steps ⇒ Strong Polarization:**

- **Proof:** Assume \(X_0 \leq \alpha^t \); Want \(X_t \leq \gamma^t \) w.p. \(1 - O(\alpha_1^t) \)

 - Pick \(c \) large & \(\tau \) s.t. \(\Pr[X_i < \frac{X_{i-1}}{c} | X_{i-1} \leq \tau] \geq \theta \)

 2.1: \(\Pr[\exists i \text{ s.t. } X_i \geq \tau] \leq \tau^{-1} \cdot \alpha^t \) (Doob's Inequality)

 2.2: Let \(Y_i = \log X_i \); Assuming \(X_i \leq \tau \) for all \(i \)

 - \(Y_i - Y_{i-1} \leq -\log c \) w.p. \(\geq \theta \); & \(\geq k \) w.p. \(\leq 2^{-k} \).

 - \(\mathbb{E}[Y_t] \leq -t \left(\frac{\log c}{\theta} + 1 \right) \leq 2t \cdot \log \gamma \)

 - Concentration! \(\Pr[Y_t \geq t \cdot \log \gamma] \leq \alpha_2^t \) QED!
Conclusion

- Simple General Analysis of Strong Polarization
- But main reason to study general polarization:
 - Maybe some matrices polarize even faster!
 - This analysis does not get us there.
 - But hopefully following the (simpler) steps in specific cases can lead to improvements.
Thank You!