General Strong Polarization

Madhu Sudan
Harvard University

Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo)
Shannon and Channel Capacity

- Shannon ['48]: For every (noisy) channel of communication, \(\exists \) capacity \(C \) s.t. communication at rate \(R < C \) is possible and \(R > C \) is not.
- Needs lot of formalization – omitted.

Example:

- Acts independently on bits
- Capacity = \(1 - H(p) \); \(H(p) \) = binary entropy!
- \(H(p) = p \cdot \log \frac{1}{p} + (1 - p) \cdot \log \frac{1}{1-p} \)
“Achieving” Channel Capacity

- Commonly used phrase. Many mathematical interpretations.
- Some possibilities:
 - How small can \(n \) be?
 - Get \(R > C - \epsilon \) with polytime algorithms?

Shannon ‘48: \(n = O(C - R)^{-2} \)

Forney ‘66: \(\text{time} = \text{poly} \left(n, 2^{\frac{1}{\epsilon^2}} \right) \)

- [Luby et al. ‘95] Make running time \(\text{poly} \left(\frac{1}{\epsilon} \right) \)?
 - Open till 2008
 - Arikan’08: Invented “Polar Codes” ...
 - Final resolution: Guruswami+Xia’13, Hassani+Alishahi+Urbanke’13 – Strong analysis
Context for today’s talk

- [Arikan’08]: General class of codes.
- [GX’13, HAU’13]: One specific code within.
- Why?
 - Bottleneck: Strong Polarization
 - Arikan et al.: General class polarizes
 - [GX, HAU]: Specific code polarizes strongly!
- This work/talk:
 - Introduce Local Polarization
 - Local ⇒ Strong Polarization
 - Thm: All known codes that polarize also polarize strongly!
This talk:

- What are Polar Codes
- “Local vs. Global” (Strong) Polarization
- Analysis of Polarization
Lesson 0: Compression ⇒ Coding

- Linear Compression Scheme:
 - (H, D) for compression scheme for $\text{bern}(p)^n$ if
 - Linear map $H : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^m$
 - $\Pr_{Z \sim \text{bern}(p)^n} [D(H \cdot Z) \neq Z] \leq \epsilon$
 - Hopefully $\frac{m}{n} \rightarrow H(p)$

- Compression ⇒ Coding
 - Let H^\perp be such that $H \cdot H^\perp = 0$;
 - Encoder: $X \mapsto H^\perp \cdot X$
 - Error-Corrector: $Y = H^\perp \cdot X + \eta \mapsto Y - D(H \cdot Y) =_{w.p.}(1-\epsilon) H^\perp \cdot X$
Question: How to compress?

- Arikan’s key idea:
 - Start with 2×2 “Polarization Transform”:
 \[(U, V) \rightarrow (U + V, V)\]
 - Invertible – so does nothing?
 - If U, V independent,
 - then $U + V$ “more random” than either
 - $V \mid U + V$ “less random” than either
 - Iterate (ignoring conditioning)
 - End with bits that are completely random, or completed determined (by others).
 - Output “totally random part” to get compression!
Information Theory Basics

- **Entropy:**
 - **Defn:** for random variable $X \in \Omega$,
 \[
 H(X) = \sum_{x \in \Omega} p_x \log \frac{1}{p_x} \text{ where } p_x = \Pr[X = x]
 \]
 - **Bounds:** $0 \leq H(X) \leq \log|\Omega|$

- **Conditional Entropy**
 - **Defn:** for jointly distributed (X, Y)
 \[
 H(X|Y) = \sum_y p_y H(X|Y = y)
 \]
 - **Chain Rule:** $H(X, Y) = H(X) + H(Y|X)$
 - **Conditioning does not increase entropy:** $H(X|Y) \leq H(X)$
 - **Equality \iff Independence:** $H(X|Y) = H(X) \iff X \perp Y$

August 9, 2017
Iteration by Example:

- \((A, B, C, D) \rightarrow (A + B + C + D, B + D, C + D, D)\)
- \((E, F, G, H) \rightarrow (E + F + G + H, F + H, G + H, H)\)
Algorithmics

- Summary: Iterating t times yields $n \times n$-polarizing transform for $n = 2^t$:
 - $(Z_1, ..., Z_n) \rightarrow (W_1, ..., W_n) \rightarrow W_S$ ($|S| \approx H(p) \cdot n$)

- Encoding/Compression: Clearly poly time.

- Decoding/Decompression:
 - “Successive cancellation decoder”: implementable in poly time.
 - Can compute $\Pr_{Z \sim \text{bern}(p)}[W_i = 1 | W_{<i}]$ recursively
 - Can reduce both run times to $O(n \log n)$
 - Only barrier: Determining S
 - Resolved by [Tal-Vardy’13]
Analysis: The Polarization martingale

- **Martingale**: Sequence of r.v., $X_0, X_1, ...$
 - $\forall i, x_0, ..., x_{i-1}, \mathbb{E}[X_i|x_0, ..., x_{i-1}] = x_{i-1}$

- **Polarization martingale**: X_i = Conditional entropy of random output at ith stage.

- **Why martingale?**
 - At ith stage two inputs take $(U, A); (V, B)$
 - Output = $(U + V, A \cup B)$ and $(V, A \cup B \cup U + V)$
 - Input entropies = x_{i-1} ($H(U|A) = H(V|B) = x_{i-1}$)
 - Output entropies average to x_{i-1}
 \[H(U + V|A, B) + H(V|A, B, U + V) = 2x_{i-1} \]
Quantitative issues

- How “quickly” does this martingale converge? (λ)
- How “well” does it converge? (ϵ)
- Formally, want:
 \[\Pr [X_t \in (\lambda, 1 - \lambda)] \leq \epsilon \]

- ϵ: Gives gap to capacity
- λ: Governs decoding failure $\approx n \cdot \sqrt{\lambda}$
- Reminder: $n = 2^t$
- For useable code, need: $\lambda \ll 4^{-t}$
- For poly($\frac{1}{\epsilon}$) block length, need: $\epsilon \leq \alpha^t$, $\alpha < 1$
Regular and Strong Polarization

- **(Regular) Polarization:**
 \[\forall \gamma > 0, \quad \lim_{t \to \infty} \{ \Pr[X_t \in (\gamma^t, 1 - \gamma^t)] \} \to 0. \]

- **Strong Polarization:**
 \[\forall \gamma > 0 \exists \alpha > 0 \forall t, \quad \Pr[X_t \in (\gamma^t, 1 - \gamma^t)] \leq \alpha^t \]

- Both “global” properties (large \(t \) behavior)

- Construction yields: Local Property
 - How does \(X_i \) relate to \(X_{i-1} \)?

- Local vs. Global Relationship?
 - Regular polarization well understood.
 - Strong understood only \((U,V) \mapsto (U + V, V)\)
 - What about \((U,V,W) \mapsto (U + V, V, W)\)?, more generally?
General Polarization

- Basic underlying ingredient $M \in \mathbb{F}_2^{k \times k}$

- Local polarization step: Pick $(U_j, A_j)_{j \in [k]}$ i.i.d.

- One step: generate $(L_1, ..., L_k) = M \cdot (U_1, ..., U_k)$

- $X_{i-1} = H(U_j | U_\ell A_\ell, U_{< j}) = H(U_j | A_j)$

- $X_i = H(L_j | U_\ell A_\ell, L_{< j})$

- Examples

 - $H_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$; $H_3' = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 - Which matrices polarize? Strongly?
Mixing matrices

- Observation 1: Identity matrix does not polarize.
- Observation 1’: Upper triangular matrix does not polarize.
- Observation 2: (Row) permutation of non-polarizing matrix does not polarize!
 - Corresponds to permuting (U_1, \ldots, U_k)
- Definition: M mixing if no row permutation is upper-triangular.
- [KSU]: M mixing \Rightarrow martingale polarizes.
- [Our main theorem]: M mixing \Rightarrow martingale polarizes strongly.
Key Concept: Local (Strong) Polarization

- Martingale X_0, X_1, \ldots locally polarizes if it exhibits
 - Variance in the middle:
 \[\forall \tau > 0 \exists \sigma > 0, \quad \text{Var}[X_i \mid X_{i-1} \in (\tau, 1-\tau)] > \sigma \]
 - Suction at the end:
 \[\exists \theta > 0 \forall c < \infty, \exists \tau > 0 \quad \text{Pr} \left[X_i < \frac{X_{i-1}}{c} \mid X_{i-1} \leq \tau \right] \geq \theta \]
 (similarly with $1 - X_i$)

- Definition local: compares X_i with X_{i-1}

- Implications global:
 - Thm 1: Local Polarization \Rightarrow Strong Polarization.
 - Thm 2: Mixing matrices \Rightarrow Local Polarization.
Mixing Matrices ⇒ Local Polarization

- **2 × 2 case:**
 - Ignoring conditioning, we have
 \[
 H(p) \rightarrow \begin{cases}
 H(2p(1 - p)) & \text{w.p.} \frac{1}{2} \\
 2H(p) - H(2p(1 - p)) & \text{w.p.} \frac{1}{2}
 \end{cases}
 \]
 - Variance, Suction ⇐ Taylor series for \(\log(.) \) ...

- **k × k case:**
 - Reduction to 2 × 2 case: \(\frac{1}{2} \) probs. \(\rightarrow \sim \frac{1}{k} \)
Local ⇒ (Global) Strong Polarization

- Step 1: Medium Polarization:
 - \(\exists \alpha, \beta < 1 \Pr[X_t \in (\beta^t, 1 - \beta^t)] \leq \alpha^t \)
 - Proof: Potential \(\Phi_t = \mathbb{E}[\min\{\sqrt{X_t}, \sqrt{1 - X_t}\}] \)
 - Variance+Suction ⇒ \(\exists \eta < 1 \) s.t. \(\Phi_t \leq \eta \cdot \Phi_{t-1} \)
 - (Aside: Why \(\sqrt{X_t} \)? Clearly \(X_t \) won’t work. And \(X_t^2 \) increases!)
 - \(\Phi_t \leq \eta^t \Rightarrow \Pr[X_t \in (\beta^t, 1 - \beta^t)] \leq \left(\frac{\eta}{\beta}\right)^t \)
Local \Rightarrow (Global) Strong Polarization

- **Step 1: Medium Polarization:**
 - $\exists \alpha, \beta < 1 \Pr[X_t \in (\beta^t, 1 - \beta^t)] \leq \alpha^t$

- **Step 2: Medium Polarization + t-more steps \Rightarrow Strong Polarization:**

- **Proof:** Assume $X_0 \leq \alpha^t$; Want $X_t \leq \gamma^t$ w.p. $1 - O(\alpha_1^t)$
 - Pick c large & τ s.t. $\Pr[X_i < \frac{X_{i-1}}{c} | X_{i-1} \leq \tau] \geq \theta$
 - **2.1:** $\Pr[\exists i \text{ s.t. } X_i \geq \tau] \leq \tau^{-1} \cdot \alpha^t$ (Doob’s Inequality)
 - **2.2:** Let $Y_i = \log X_i$; Assuming $X_i \leq \tau$ for all i
 - $Y_i - Y_{i-1} \leq -\log c$ w.p. $\geq \theta$; & $\geq k$ w.p. $\leq 2^{-k}$.
 - $\mathbb{E}[Y_t] \leq -t \left(\frac{\log c}{\theta} + 1\right) \leq 2t \cdot \log \gamma$
 - **Concentration!** $\Pr[Y_t \geq t \cdot \log \gamma] \leq \alpha_2^t$ QED!
Conclusion

- Simple General Analysis of Strong Polarization
- But main reason to study general polarization:
 - Maybe some matrices polarize even faster!
 - This analysis does not get us there.
 - But hopefully following the (simpler) steps in specific cases can lead to improvements.
Thank You!