General Strong Polarization

Madhu Sudan
Harvard University

Joint work with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo)
This Talk: Martingales and Polarization

- **[0,1]-Martingale**: Sequence of r.v.s X_0, X_1, X_2, \ldots
 \[X_t \in [0,1], \quad \mathbb{E}[X_{t+1}|X_0, \ldots, X_t] = X_t \]

- Well-studied in algorithms:
 - [MotwaniRaghavan, §4.4], [MitzenmacherUpfal, §12]
 - E.g., $X_t = \text{Expected approx. factor of algorithm given first } t \text{ random choices.}$

- Usually study “concentration”
 - E.g. ... whp $X_{\text{final}} \in [X_0 \pm \epsilon] \iff \lim_{t \to \infty} X_t = X_0$

- Today: Polarization:
 - ... whp $X_{\text{final}} \notin (\epsilon, 1 - \epsilon) \iff \lim_{t \to \infty} X_t = \text{Bern}(X_0)$

- Why? – Polar codes …
Main Result: Definition and Theorem

- **Strong Polarization:** (informally)
 \[\Pr[X_t \in (\tau, 1 - \tau)] \leq \epsilon \text{ if } t \geq \max\{O(\log 1/\epsilon), o(\log 1/\tau)\} \]
 formally \(\forall \gamma > 0 \exists \beta < 1, c \text{ s.t. } \forall t \Pr[X_t \in (\gamma^t, 1 - \gamma^t)] \leq c \cdot \beta^t \)

- **A non-polarizing example:** \(X_0 = \frac{1}{2}; X_{t+1} = X_t \pm 2^{-t-2} \)

- **Local Polarization:**
 - **Variance in the middle:** \(X_t \in (\tau, 1 - \tau) \)
 \(\forall \tau > 0 \exists \sigma > 0 \text{ s.t. } \forall t, X_t \in (\tau, 1 - \tau) \Rightarrow \text{Var}[X_{t+1} | X_t] \geq \sigma \)
 - **Suction at the ends:** \(X_t \not\in (\tau, 1 - \tau) \)
 \(\exists \theta > 0, \forall c < \infty, \exists \tau > 0 \text{ s.t. } X_t < \tau \Rightarrow \Pr\left[X_{t+1} < \frac{X_t}{c}\right] \geq \theta \)

- **Theorem:** Local Polarization \(\Rightarrow \) Strong Polarization.

Both definitions qualitative!
Rest of the talk

- **Background/Motivation:**
 - **The Shannon Capacity Challenge**
 - Resolution by [Arikan’08], [Guruswami-Xia’13], [Hassani,Alishahi,Urbanke’13]: Polar Codes!

- **Key ideas:**
 - Polar Codes & Arikan-Martingale.
 - Implications of Weak/Strong Polarization.

- **Our Contributions: Simplification & Generalization**
 - Local Polarization \Rightarrow Strong Polarization
 - Arikan-Martingale Locally Polarizes (generally)
Shannon and Channel Capacity

- Shannon ['48]: For every (noisy) channel of communication, \(\exists \) capacity \(C \) s.t. communication at rate \(R < C \) is possible and \(R > C \) is not.
 - Needs lot of formalization – omitted.

- Example:
 - Acts independently on bits
 - Capacity = \(1 - H(p) \); \(H(p) \) = binary entropy!
 - \(H(p) = p \cdot \log \frac{1}{p} + (1 - p) \cdot \log \frac{1}{1-p} \)
“Achieving” Channel Capacity

- Commonly used phrase. Many mathematical interpretations.

- Some possibilities:
 - How small can n be?
 - Get $R > C - \epsilon$ with polytime algorithms?

Shannon ’48: $n = O(C - R)^{-2}$

Forney ’66: time = $\text{poly}(n, 2^{\frac{1}{\epsilon^2}})$

- [Luby et al. ’95] Make running time $\text{poly}\left(\frac{n}{\epsilon}\right)$?

- Open till 2008

- Arikan’08: Invented “Polar Codes” ...

- Final resolution: Guruswami+Xia’13, Hassani+Alishahi+Urbanke’13 – Strong analysis
Polar Codes and Polarization

- Arikan:
 - Defined Polar Codes, one for every t
 - Associated Martingale X_0, \ldots, X_t, \ldots
 - tth code: Length $n = 2^t$
 - If $\Pr[X_t \in (\gamma, 1 - \delta)] \leq \epsilon$ then tth code is $(\epsilon + \delta)$-close to capacity, and
 - $\Pr[\text{Decode(Encode}(m) + \text{error}) \neq m] \leq n \cdot \gamma$
 - Need $\gamma = o\left(\frac{1}{n}\right)$ (strong polarization $\Rightarrow \gamma = \text{neg}(n)$)
 - Need $\epsilon = 1/n^{\Omega(1)}$ (\Leftarrow strong polarization)
Context for today’s talk

- [Arikan’08]: Martingale associated to general class of codes.
 - Martingale polarizes (weakly) implies code achieves capacity (weakly)
 - Martingale polarizes weakly for entire class.
- [GX’13, HAU’13]: Strong polarization for one specific code.
- Why so specific?
 - Bottleneck: Strong Polarization
- Rest of talk: Polar codes, Martingale and Strong Polarization
Lesson 0: Compression ⇒ Coding

- **Linear Compression Scheme:**
 - (H, D) for compression scheme for $\text{bern}(p)^n$ if
 - Linear map $H: \mathbb{F}_2^n \rightarrow \mathbb{F}_2^m$
 - $\Pr_{Z \sim \text{bern}(p)^n} [D(H \cdot Z) \neq Z] = o(1)$
 - Hopefully $\frac{m}{n} \leq H(p) + \epsilon$

- **Compression ⇒ Coding**
 - Let H^\perp be such that $H \cdot H^\perp = 0$
 - Encoder: $X \mapsto H^\perp \cdot X$
 - Error-Corrector: $Y = H^\perp \cdot X + \eta \mapsto Y - D(H \cdot Y)$

 \[= \text{w.p.}(1-o(1)) \] $H^\perp \cdot X$
Question: How to compress?

- Arikan’s key idea:
 - **Start with** 2 × 2 “Polarization Transform”:
 \((U, V) \rightarrow (U + V, V) \)
 - Invertible – so does nothing?
 - If \(U, V \) independent,
 - then \(U + V \) “more random” than either
 - \(V \mid U + V \) “less random” than either
 - Iterate (ignoring conditioning)
 - End with bits that are almost random, or almost determined (by others).
 - Output “totally random part” to get compression!
Information Theory Basics

- **Entropy:**
 - **Defn:** for random variable $X \in \Omega$,
 \[
 H(X) = \sum_{x \in \Omega} p_x \log \frac{1}{p_x} \quad \text{where} \quad p_x = \Pr[X = x]
 \]
 - **Bounds:** $0 \leq H(X) \leq \log |\Omega|$

- **Conditional Entropy**
 - **Defn:** for jointly distributed (X,Y)
 \[
 H(X|Y) = \sum_y p_y H(X|Y = y)
 \]
 - **Chain Rule:** $H(X,Y) = H(X) + H(Y|X)$
 - **Conditioning does not increase entropy:** $H(X|Y) \leq H(X)$
 - **Equality \Leftrightarrow Independence:** $H(X|Y) = H(X) \Leftrightarrow X \perp Y$
Iteration by Example:

- \((A, B, C, D) \rightarrow (A + B + C + D, B + D, C + D, D)\)
- \((E, F, G, H) \rightarrow (E + F + G + H, F + H, G + H, H)\)
The Polarization Butterfly

$P_n(U, V) = \left(P_n\left(\frac{U + V}{2} \right), P_n(V) \right)$

Polarization $\Rightarrow \exists S \subseteq [n]$

$H(W_{[n]-S} | W_S) \rightarrow 0$

$|S| \leq (H(p) + \epsilon) \cdot n$

Compression $E(Z) = P_n(Z)_S$

Encoding time $= O(n \log n)$ (given S)

To be shown:

1. Decoding $= O(n \log n)$
2. Polarization!
The Polarization Butterfly: Decoding

Decoding idea:
Given $S, W_S = P_n(U, V)$
Compute $U + V \sim \text{Bern}(2p - 2p^2)$
Determine $V \sim ?$

Decoding Algorithm:
Given $S, W_S = P_n(U, V), p_1, ..., p_n$
- Compute $q_1, ... q_{n/2} \leftarrow p_1 \ldots p_n$
- Determine $U + V = D\left(W_S^+, q_1 \ldots q_{n/2}\right)$
- Compute $r_1 \ldots r_{n/2} \leftarrow p_1 \ldots p_n; U + V$
- Determine $V = D\left(W_S^-, r_1 \ldots r_{n/2}\right)$

Key idea: Stronger induction!
- non-identical product distribution

Key idea: Stronger induction!
Idea: Follow $X_t = H(Z_{i,t} | Z_{<i,t})$ for random i.

Martingale?

X_t can’t distinguish $i = j$ from $i = k$.

$H(Z_{j,t}, Z_{k,t}) = H(Z_{j,t+1}, Z_{k,t+1})$

Chain Rule ...

$\Rightarrow \mathbb{E}[X_{t+1} | X_t] = X_t$
Remaining Tasks:

1. Prove that $X_t \triangleq H(Z_{i,t} | Z_{<i,t})$ polarizes locally
2. Prove that Local polarization \Rightarrow Strong Polarization.

- Recall

 - **Strong Polarization**: (informally)
 \[
 \Pr[X_t \in (\tau, 1 - \tau)] \leq \epsilon \text{ if } t \geq \max\{O(\log 1/\epsilon), o(\log 1/\tau)\}
 \]
 formally \hspace{0.5cm} $\forall \gamma > 0 \exists \beta < 1, c \text{ s.t. } \forall t \Pr[X_t \in (\gamma^t, 1 - \gamma^t)] \leq c \cdot \beta^t$

 - **Local Polarization**:
 - **Variance in the middle**: $X_t \in (\tau, 1 - \tau)$
 $\forall \tau > 0 \exists \sigma > 0 \text{ s.t. } \forall t, X_t \in (\tau, 1 - \tau) \Rightarrow \text{Var}[X_{t+1} | X_t] \geq \sigma$
 - **Suction at the ends**: $X_t \notin (\tau, 1 - \tau)$
 $\exists \theta > 0, \forall c < \infty, \exists \tau > 0 \text{ s.t. } X_t < \tau \Rightarrow \Pr\left[X_{t+1} < \frac{X_t}{c}\right] \geq \theta$
Local \Rightarrow (Global) Strong Polarization

Step 1: Medium Polarization:
- $\exists \alpha, \beta < 1 \Pr[X_t \in (\beta^t, 1 - \beta^t)] \leq \alpha^t$
- **Proof:** Potential $\Phi_t = \mathbb{E}[\min\{\sqrt{X_t}, \sqrt{1 - X_t}\}]$
 - Variance+Suction $\Rightarrow \exists \eta < 1$ s.t. $\Phi_t \leq \eta \cdot \Phi_{t-1}$
 - (Aside: Why $\sqrt{X_t}$? Clearly X_t won’t work. And X_t^2 increases!)

- $\Rightarrow \Phi_t \leq \eta^t \Rightarrow \Pr[X_t \in (\beta^t, 1 - \beta^t)] \leq \left(\frac{\eta}{\beta}\right)^t$
Local ⇒ (Global) Strong Polarization

- Step 1: Medium Polarization:
 - \(\exists \alpha, \beta < 1 \Pr[X_t \in (\beta^t, 1 - \beta^t)] \leq \alpha^t \)

- Step 2: Medium Polarization + \(t \)-more steps ⇒ Strong Polarization:

Proof: Assume \(X_0 \leq \alpha^t \); Want \(X_t \leq \gamma^t \) w.p. \(1 - O(\alpha^t) \)

- Pick \(c \) large & \(\tau \) s.t. \(\Pr[X_i < \frac{X_{i-1}}{c} | X_{i-1} \leq \tau] \geq \theta \)

 2.1: \(\Pr[\exists i \text{ s.t. } X_i \geq \tau] \leq \tau^{-1} \cdot \alpha^t \) (Doob’s Inequality)

 2.2: Let \(Y_i = \log X_i \); Assuming \(X_i \leq \tau \) for all \(i \)
 - \(Y_i - Y_{i-1} \leq -\log c \) w.p. \(\geq \theta \); \& \(\geq k \) w.p. \(\leq 2^{-k} \).
 - \(\mathbb{E}[Y_t] \leq -t \left(\frac{\log c}{\theta} + 1 \right) \leq 2t \cdot \log \gamma \)
 - Concentration! \(\Pr[Y_t \geq t \cdot \log \gamma] \leq \alpha^t \) QED!
Polarization of Arikan Martingale

- Ignoring conditioning:
 - $X_t = H(p) \Rightarrow X_{t+1} = H(2p - 2p^2)$ w.p. $\frac{1}{2}$
 - $= 2H(p) - H(2p - 2p^2)$ w.p. $\frac{1}{2}$

- Variance in the middle: Continuity of $H(\cdot)$ and separation of $2p - 2p^2$ from p

- Suction at high end:
 - $X_t = 1 - \epsilon \Rightarrow X_{t+1} = 1 - O(\epsilon^2)$ w.p. $\frac{1}{2}$

- Suction at low end:
 - $X_t = H(p) \Rightarrow X_{t+1} = H\left(\frac{p}{\log p}\right)$ w.p. $\frac{1}{2}$
General Strong Polarization?

- So far: \(P_n = H_2^\otimes \ell \) for \(H_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \)

- What about other matrices?
 - E.g., \(P_n = H_3^\otimes \ell \) for \(H_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \).

- Open till our work!

- Necessary conditions: \(H \) invertible, not-lower-triangular

- Our work: Necessary conditions suffice (for local polarization)!
Conclusion

- Simple General Analysis of Strong Polarization
- But main reason to study general polarization:
 - Maybe some matrices polarize even faster!
 - This analysis does not get us there.
 - But hopefully following the (simpler) steps in specific cases can lead to improvements.
Thank You!