Local Decoding and Testing Polynomials over Grids

Madhu Sudan
Harvard University

Joint work with Srikanth Srinivasan (IIT Bombay)
DeMillo-Lipton-Schwarz-Zippel

- **Notation:**
 - $\mathbb{F} = \text{field}$,
 - $\mathbb{F}(d,n) = \text{set of deg. } \leq d, n \text{ var. poly over } \mathbb{F}$
 - $\delta(f,g) = \text{normalized Hamming distance}$
 - $\delta_d(f) = \min_{g \in \mathbb{F}(d,n)} \{\delta(f,g)\}$

- **DLSZ Lemma:** Let $S \subseteq \mathbb{F}$, with $2 \leq |S| < \infty$. If $f, g : S^n \to \mathbb{F}$ satisfy $f \neq g \in \mathbb{F}(d,n)$ then $\delta(f,g) \geq 2^{-d}$.
 - Strengthens to $\delta(f,g) \geq 1 - d/|S|$ if $d < |S|$
 - Holds even if $S = \{0,1\}$
 - For this talk: $d = \text{constant}$ so $\delta(f,g)$ bounded away from 0.
 - DLSZ Lemma converts polynomials into error-correcting codes.
 - With bonus: decodability, locality ...
Local Decoding and Testing

- Informally: Given oracle access to $f: S^n \to \mathbb{F} \ldots$
 - Testing: determine if $\delta_d(f) \leq \epsilon$
 - Decoding: If $\delta_d(f) \leq \delta_0$ and g is nearest poly then determine value of $g(a)$ given $a \in S^n$

- Parameters:
 - Query complexity = # of oracle queries
 - Testing accuracy $\equiv \Pr[\text{rejection}] / \delta_d(f)$
 - Decoding distance (δ_0 above)

- Ideal: Query complexity $O_d(1)$, accuracy, dec. distance $\Omega_d(1)$
- Terminology $\mathbb{F}(d, n)$ testable (decodable) over S if ideal achievable.
- Thms: For finite \mathbb{F}, $\mathbb{F}(d, n)$ decodable over \mathbb{F} (folklore) and testable over \mathbb{F} ([Rubinfeld+S.'96] …. [Kaufman+Ron’04])
Polynomials over Grids

- Testing + decoding thms hold only for $f : \mathbb{F}^n \to \mathbb{F}$
- Not surprising ... repeated occurrence with polynomials.
 - Even classical decoding algorithms (non-local) work only in this case!
 - [Kopparty-Kim’16]: Non-local Decoder (up to half the distance) for $f : S^n \to \mathbb{F}$ for all finite S

- This talk: Testing + decoding when $S = \{0,1\}$ “grid”
 - (Note: equivalent to $S_1 \times \cdots \times S_n$ with $|S_i| = 2$)
Obstacles to decoding/testing

- Standard insight behind testing/decoding $d < |\mathbb{F}|$
 - f has deg. $\leq d$ iff f restricted to lines has $\leq d$
 - Can test/decode function on lines.
 - Reduces complexity from \mathbb{F}^n to \mathbb{F}.

- When $d > |\mathbb{F}|$ use subspaces
 - (= collection of linear restrictions)
 - “Affine invariance” → “2 transitivity” ...

- Problem over grids:
 - General lines don’t stay within grid!
 - Only linear restrictions that stay in grid:
 - $x_i = 0$ or $x_i = 1$
 - $x_i = x_j$ or $x_i = 1 - x_j$ (denoted “$x_i = x_j \oplus b$”)

January 11, 2018
ITCS: Polynomials over Grids
Main Results

- **Thm 1.** \(\mathbb{F}(1, n) \) **not** locally decodable over grid if \(\text{char}(\mathbb{F}) \to \infty \)
 - No 2-transitivity! Serious obstacle!

- **Thm 2.** \(\mathbb{F}(d, n) \) is locally decodable over grid if \(\text{char}(\mathbb{F}) < \infty \).
 - Query complexity = \(2^{O(\max\{d, \text{char}(\mathbb{F})\})} \)
 - Decoding without 2-transitivity!

- **Thm 3.** \(\mathbb{F}(d, n) \) is locally testable over grid (\(\forall \mathbb{F} \))
 - Testing without decoding!
Proofs: Not LDC over \mathbb{Q}

- **Idea ($d = 1$):** Consider f is a linear function that is erased on "imbalanced" points (of weight $\notin \left[\frac{n}{2} - c\sqrt{n}, \frac{n}{2} + c\sqrt{n}\right]$)

- **Claim 1:** No local constraints over \mathbb{Q} on balanced points and 0^n
 - **Claim 1.1:** if $f(0^n) = \sum_{i=1}^{\ell} a_i f(x_i) \forall f$ then $0^n = \sum_{i=1}^{\ell} a_i x_i$
 - **Claim 1.2:** $1 \leq |a_i| \leq \ell$
 - **Claim 1.3:** If x_1, \ldots, x_{ℓ} are ϵ-balanced
 then $\sum_{i}^{j} a_i x_i$ is $(\epsilon \cdot \sum_{i}^{j} |a_i|)$-balanced

- **Claim 2:** No local constraints \Rightarrow Not LDC
 - Known over finite fields [BHR’04]
 - Not immediate for \mathbb{Q}
Proofs: LDC over small characteristic

- Given: \(f \) \(\delta \)-close to \(g \in \mathbb{F}(d,n) \), \(a \in \{0,1\}^n \) (\(\text{char}(\mathbb{F}) = p \))
- Pick \(\sigma : [n] \to [k] \) uniformly and let \(x_i = a_i \oplus y_{\sigma(i)} \)
 - So considering \(f'(y_1, ..., y_k) = f(a \oplus y_{\sigma}) \):
 - \(f'(0) = f(a) \); \(g'(0) = g(a) \)
 - Claim 1: For balanced \(y \), have \(a \oplus y_{\sigma} \perp a \)
 - Claim 2: If \(\frac{k}{2} = p^t \) and \(\frac{k}{2} > d \) then \(g'(0) \) determined by \(\{ g'(y) \mid |y| = \frac{k}{2} \} \)
 - (Usual ingredient “Lucas’s Theorem” \(x^p + y^p = (x + y)^p \))
Proofs: LTC over all fields: Test

- Test
 - Pick $a \in \{0,1\}^n$ uniformly and $\sigma: [n] \to [k]$ “randomly”
 - Verify $f'(y_1, \ldots, y_k) = f(a \oplus y_\sigma)$ is of degree d

- Randomly = ?
 - Not uniformly (don’t know how to analyze).
 - Instead “random union-find”
 - Initially each x_i in ith bucket.
 - Iterate: pick two uniformly random buckets and merge till k buckets left.
 - Assign y_1, \ldots, y_k to k buckets randomly.
 - Allows for proof by induction
Proofs: LTC over all field: Analysis

- Key ingredients: (mimics BKSSZ analysis for RM)
 - Main claim: \(\Pr[\text{test rejects } f] \geq 2^{-O(d)} \cdot \min\{1, \delta_d(f)\} \)
 - Proof by induction on \(n \) with 3 cases:
 - Case 1: \(f \) moderately close to \(\text{deg. } d \)
 - Show that eventually \(f \) disagrees from nearby poly on exactly one of \(2^k \) samples.
 - Usual proof – pairwise independence
 - Our proof – hypercontractivity of sphere [Polyanskiy] + prob. fact about random union-find
 - Case 2: \(\Pr_{i,j,b} [f|_{x_i=x_j\oplus b} \text{ very close to deg. } d] \) small
 - Case 3: \(f \) far from \(\text{deg. } d \), but \(\Pr_{i,j,b} [\ldots] \) high
 - Use algebra to get contradiction. (Stitch different polynomials from diff. \((i,j,b)\)'s to get nearby poly to \(f \))

January 11, 2018
ITCS: Polynomials over Grids

10 of 12
Conclusions + Open questions

- Many aspects of polynomials well-understood only over domain $= \mathbb{F}^n$
- Grid setting (S^n) far less understood.
- When $S = \{0,1\}$ (equivalently $|S| = 2$) testing possible without local decoding!
 - (novel in context of low-degree tests!)
- General S open!! (even $|S| = 3$ or even $S = \{0,1,2\}$?)
- Is there a gap between characterizability and testability here?
Thank You!