CS 229r Information Theory in Computer Science Jan 29, 2019

Lecture 1
Instructor: Madhu Sudan Scribe: Kenz Kallal

1 Welcome to CS229r

1.1 Course Information
Contact information and office hours:
e Lecturer: Madhu Sudan (madhu@cs.harvard.edu).
e Prof. Sudan’s Office Hours: Tuesday, Thursday 1:15-2:15.
e TF: Mitali Bafna (mitali.bafna@gmail.com)
e TF’s Office Hours: This week Wednesday and Friday 4:30-5:30 at LISE 319.

1.2 Course Expectations

Grades will be based on the following:
e 3 problem sets
e Scribing > 1 lecture
e Final project

e Participation (in class and on Piazza)

1.3 Potential Course Topics

The first few lectures will be about the basics of information theory. Then, they will cover applications of
information theory to computer science. They may include:

e Limits on the performance of data structures
e How well can information be compressed?
e Error-correcting codes

e Communication complexity

Streaming

Differential privacy

Optimization
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2 Basics of Information Theory

Today we will not be rigorous about the definitions or manipulations of notions from information theory.
Instead, we will give a sense of how the tools of information theory might be applied to solve interesting
problems.

2.1 Random Variables

Let X be a random variable with probability distribution Px. In this context it is convenient to restrict X to
a compact set 2. Recall that random variables X, Y can be jointly distributed with probability distribution
Pxy. This carries the data {Py|,__ }aeq of probability distributions for Y~ given any possible fixed value of
X.

2.2 Entropy

Today we will not give a fully rigorous definition of entropy, but the following “definition” will suffice to
motivate our use of it in the next section.

Definition 1 (Entropy). Let X be a random variable. The entropy of X, denoted H(X), is “the number
of bits needed, in expectation, to convey X.”

For example, Alice and Bob might both know Py, and they need to come up with a protocol to compress
X and send it over the line to each other.

So far we have no rigorous way to calculate the entropy of a random variable, but intuition tells us what
the answers are in some easy examples:

Example 2. Suppose Px is the uniform distribution over {0,1}". Then intuitively we must use n bits to
convey X, and we can write “H(X) =n"

Example 3. Suppose X is 0™ with probability 1/2 and is uniformly distributed over {0,1}™ with probability
1/2. Then we can use a single bit to indicate which case occurs, and an additional n bits in case the second
case occurs. The expected value of the number of bits used is

I+(n+1) n
L S e A T |
2 2+

so we can write “H(X) ~n/2.”

Definition 4 (Conditional Entropy). The entropy of Y conditioned on X, denoted H(Y|X), is “the number
of bits needed, in expectation, to convey Y given that X is known.” More precisely,

H(Y|X) = B [H(Y|x=)

where Y| x—, is distributed according to the joint distribution Pxy .

Example 5. Suppose X andY are independent and uniformly distributed over {0,1}™. Intuitively, knowing
X does not give any additional information about Y, we can write “H(Y|X) = H(Y) =n.”

Example 6. Suppose X is uniformly distributed over {0,1}", and Y is uniformly distributed over {0,1}?"
such that X consists of the first n bits of Y. Then, given X, one knows the first n bits of Y (and no other
information is conveyed by X ) so we can write “H(Y|X) =n.”

We now state some intuitive axioms for entropy.

(1) If |9 < o0, then H(X) < log || with equality if and only if Px is uniform on €.
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(2) H(X,Y)=H(X)+ H(Y|X). “to specify X and Y it suffices to specify X and then Y given that X
has already been transmitted.” One can show that this method of transmitting X, Y is optimal. [NB:
this axiom is frequently called the chain rule of conditional entropy]

3) H(Y|X) < H(Y).

Warning: axiom (3) does not necessarily work when specialized to an arbitrary value of X; it is only true in
expectation over all possible values of X (see Definition .

Exercise 7. Construct a counterexample to the claim that H(Y|x=o) < H(Y) for all a € Q.

Solution. We take X and Y to be supported on {0, 1} so that Y conditioned on X = 0 has tiny entropy but
Y conditioned on X = 1 has large entropy. In particular, define the joint distribution in the following way:
take X to be distributed uniformly on {0,1} and take Y to be distributed so that Y|x—o =0 and Y|x-; is
uniformly distributed on {0,1}. Then by axiom (1),

H(Y|x=1)=1

but Y itself is equal to 0 with probability 3/4, so (for example by axiom (1)) H(Y) <1=H(Y|x=1). O

3 Shearer’s Lemma

Let F C [N]? represent some object in d-dimensional space. For any set S C [d] with |S| = k < d, we can
project F' to a k-dimensional object on the coordinates described by S. In particular, if S = {i1,...,ix}
with WLOG i1 < - -+ < i, we can define

Fs = {(xin'-wxik) : (x17""xd) EF}

Intuitively, knowing that the projections of F' are small should tell us that F' cannot be too big. This is
the content of Shearer’s Lemma. An exposition which essentially covers all of the following material may
be found in [I, §3.2]. Shearer’s Lemma was originally formulated and used by Chung, Graham, Frankl, and
Shearer in 1986 to count intersecting graphs [2].

Lemma 8 (Shearer’s Lemma). Let F' C [N]? and k < d. Then
175 < IT 175l
SC[d]
|S|=F
In the case d = 3, k = 1, this specializes to the following:

Lemma 9 (Shearer’s Lemma, “infant version”). Let F' C [N]3. Then
[F| < [Fray || Feay | [ Fisy |-

Proof. Each element of F' is of the form (1, z2, 23), where by definition x; € Fy;y for i = 1,2,3. So, we have
an inclusion of sets
F C F{l} X F{g} X F{3}

Taking the cardinalities of both sides, the result is immediate. O
We use entropy to prove a harder case, namely d = 3,k = 2.

Lemma 10 (Shearer’s Lemma, “baby version”). Let F' C [N]3. Then

|F|* < |F 23| Fra,sy [ Fpasy -
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Proof. Take the random variable (X, Y, Z) to be uniformly distributed on F. By axiom (1), we know
H(X,Y,Z) = log|F|.
By definition of the projections,
e (X,Y) is restricted to Fy; 9}
e (Y, Z) is restricted to Fya 3y
e (X, Z) is restricted to Fyq 3y
So Axiom (1) yields

H(X,Y) <log|Fyi 2|
H(Y,Z) <log|F2 3|
H(X,Y) <log|Ff1 3.

To show the desired result |F|* < |Fyy 9y||Fpa,33]|Ff1,33], by taking logs it therefore suffices to show
2HX)Y,Z)<HX,Y)+HY,Z)+ HX,Y).
Using Axiom (2), we have
HX,)Y)=H(X)+ HY|X)

H(Y,Z)=H(Y)+ H(Z|Y)
H(X,Z)=H(X)+ H(Z|X)

Axiom (3) tells us that H(Y) > H(Y|X) and H(Z|X), H(Z|Y) > H(Z|X,Y). Adding up the three equations
above and applying these inequalities,

H(X,Y)+H(Y,Z)+ H(X,Z) > 2H(X) + 2H(Y|X) + 2H(Z|X,Y).

The right hand side is equal to 2H(X,Y) + 2H(Z|X,Y) = 2H(X,Y, Z) by axiom (2), which yields the
desired result.
O

Exercise 11. Can the proof of the baby version of Shearer’s Lemma be extended to the general case?

Solution. Indeed, a very slightly more general version of the proof of Lemma [10| can be used to show a more
general entropy inequality:

Lemma 12. Let X1,..., X4 be jointly distributed random variables, and Ty,...,T,, C [d] such that each
position j € [d] is included in at least £ of the sets Ty,...,Tyn,. Then

(H(Xy,...,Xq) < Y H(X7,)

1€[m]
where X1, refers to the random variable (X; : t € T;).
Proof. See P2 of Problem Set 1. O
One can compute that when Ti,...,T,, are taken to be the subsets of [d] of size exactly k, then any

element j € [d] appears in £ := ({_1) of these subsets. Shearer’s Lemma (Lemma follows from combining

this observation and Lemma [121
In fact, there is a more general version of the entropy inequality in Lemma which is also known as
“Shearer’s Lemma:
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Lemma 13 (Shearer’s Lemma, “Adult version”). Let S be a random variable distributed on the subsets of
[d], and p a constant so that Pr[i € S] > p for each i € [d]. Then

Es[H(Xs)] > pH(X1,...,X4).
Proof. Using axioms (2) and (3), we know that for a fixed choice S = {i1,...,i,},

oy Xiy)

It follows that

Es[H(Xs) > Y. Pr(S = {i1,...in}] - iH(Xle, X, )

1<iy<-<in<d a=1

= Z P;I‘[Z S S] : H(XI|X1, S aXi—l)
1€[d]

>p Z H(X;| Xy, Xioq)
1€[d]

which is equal to pH(X1,...,X4) by axiom (2). O
Lemma [I3] through the appropriate choice of S, specializes to all the previous forms of Shearer’s Lemma.
O
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