1 Administrative Notes

- Sign up on Piazza if haven't already
- Sign up for scribing. If needed, double up after spring break
- PS1 due Fri 2/8
- Follow http://people.seas.harvard.edu/ madhusudan/courses/Spring2019/
- Start thinking about potential final projects

2 Formal Definition of Entropy

Let X be a random variable with probability distribution P_{X}. Last class we defined entropy informally as "the number of bits needed, in expectation, to convey X ". Technically, this definition is incorrect, as demonstrated by the following example:
Example 1. Let $X_{1}, \ldots, X_{100} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p=0.01)$. According to the axioms introduced in Lecture 1, $H\left(X_{1}, \ldots, X_{100}\right)=\sum_{i=1}^{100} H\left(X_{i}\right)$ because each X_{i} is independent. One bit is needed to convey each X_{i}, so the RHS has value 100. However, $p=0.01$ is small, indicating that we could compress the joint set and convey the information in many fewer bits. This implies that under the previous definition of entropy $H\left(X_{1}, \ldots, X_{100}\right)<\sum_{i=1}^{100} H\left(X_{i}\right)$, violating the axioms.

The correct definition, in words, is:
Definition 2 (Entropy). Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} P_{X}$. The entropy of X is the limit as $n \rightarrow \infty$ of the number of bits needed, in expectation and on average, to convey the n iid samples of X.

To make this formal we introduce an encoder and decoder function. For $X \in \Omega, \forall n$,

$$
\begin{aligned}
& E_{n}: \Omega^{n} \rightarrow\{0,1\}^{*} \\
& D_{n}:\{0,1\}^{*} \rightarrow \Omega^{n} \times\{?\} \\
& \text { s.t. } \forall \underset{\sim}{\omega} \in \Omega^{n} D_{n}\left(E_{n}(\underset{\sim}{\omega})\right)=\underset{\sim}{\omega} \\
& \forall{\underset{\sim}{\omega}}^{(1)} \neq{\underset{\sim}{\omega}}^{(2)} E_{n}\left({\underset{\sim}{\omega}}^{(1)}\right) \text { not a prefix of } E_{n}\left({\underset{\sim}{\omega}}^{(2)}\right)
\end{aligned}
$$

An encoder and decoder paid $\left(E_{n}, D_{n}\right)$ satisfying these requirements is called a valid pair. Note that the prefix-free requirement is sufficient to ensure the mapping is invertible, but gives additional nice properties. Given these mappings, we define entropy formally as

$$
H(x) \triangleq \lim _{n \rightarrow \infty}\left\{\min _{\left(E_{n}, D_{n}\right) \text { valid }}\left\{\frac{1}{n} \underset{\sim}{\underset{\sim}{\sim} P_{x}^{n}} \underset{\mathbb{E}}{ }\left[\left|E_{n}(\underset{\sim}{x})\right|\right]\right\}\right\}
$$

where $\left|E_{n}(\underset{\sim}{x})\right|$ denotes the length of the binary encoding.
CS 229r Information Theory in Computer Science-1

3 Binomial Entropy Computation

While the previous discussion gives the operational definition, in practice we want to compute entropy directly from the distribution P_{X}. First, we consider the case $X \sim \operatorname{Bernoulli}(p)$. According to the definition above, we need to consider $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p)$. In this case, the sample $\left(X_{1}, \ldots, X_{n}\right)$ forms a binary sequence of length n. We use the following encoding procedure:

1. Alice sends Bob the number of ones in the sequence, $k=\sum X_{i}$
2. Alice sends Bob the index of the correct binary sequence, among the $\binom{n}{k}$ possibilities consisting of k ones (they have previous agreed on an ordering).

The number of bits to convey an integer a is $\log a$, therefore

$$
\underset{\sim}{x} \sim P_{x}^{n}\left[\left|E_{n}(\underset{\sim}{x})\right|\right]=\log n+\log \binom{n}{k}
$$

By the weak law of large numbers,

$$
\forall \varepsilon>0, \quad \lim _{n \rightarrow \infty} P\left(\left|\sum X_{i}-n p\right|>\varepsilon\right)=0
$$

As the definition of entropy involves $\lim _{n \rightarrow \infty}$, it suffices in the following discussion to consider $k=$ $\sum X_{i}=n p$ with the understanding that additional terms exist which go to 0 as $n \rightarrow \infty$.

Introducing Stirling's approximation,
Definition 3 (Stirling's approximation). For large $n, \log n!=n \log n-n \log e+O(\log n)$ where the logs are base 2.
we conclude

$$
\begin{aligned}
& \log \binom{n}{p n}=h(p) n+O(\log n) \\
& h(p)=p \log \frac{1}{p}+(1-p) \log \frac{1}{1-p}
\end{aligned}
$$

Exercise 4. Show that $\log \binom{n}{p n}=h(p) n+O(\log n)$.
In the limit $n \rightarrow \infty$ the $\log n$ terms disappear, and dividing by n per the entropy definition gives

$$
H(X) \leq h(p)
$$

To make this an equality we need to show $H(X) \geq h(p) \forall\left(E_{n}, D_{n}\right)$. For any encoding, the receiver needs to distinguish between $\binom{n}{n p}$ possible strings. By Chernoff bounds, $\forall t$

$$
\left.\begin{array}{rl}
\operatorname{Pr}\left[\left|E_{n}(\underset{\sim}{x})\right| \leq \log \binom{n}{p n}-t\right] \leq 2^{-t} \\
\Longrightarrow & \operatorname{Pr}\left[\left|E_{n}(\underset{\sim}{x})\right|\right.
\end{array} \geq \log \binom{n}{p n}-t\right] \geq 1-2^{-t} .
$$

Thus for any valid encoding,

$$
\lim _{n \rightarrow \infty}\left\{\frac{1}{n}\left[\underset{\sim}{\underset{\sim}{\sim} \sim P_{X}^{n}}\left|E_{n}(\underset{\sim}{x})\right|\right]\right\} \geq \lim _{n \rightarrow \infty}\left\{\frac{1}{n} \log \binom{n}{p n}-t / n\right\}=h(p)
$$

The fixed t falls out in the limit and we conclude $H(x) \geq h(p)$. Combining with the previous result, we find $H(x)=h(p)$.

4 Multinomial Entropy Computation

Let $\Omega=\{1, \ldots, l\}$ and $P_{X}=\left(P_{1}, \ldots, P_{l}\right)$, where $P_{i}=\operatorname{Pr}[X=i]$. Again we take n iid samples $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} P_{X}$. For large n, with high probability any string has $p_{1} n 1$'s, $p_{2} n 2$'s, $\ldots, p_{l} n l$'s. Any string with these counts is equally likely, leading to an expected compressed length,

$$
\left.\begin{array}{rl}
\underset{\sim}{x} \sim P_{x}^{n} \\
\mathbb{E}
\end{array}\left|E_{n}(x)\right|\right]=l \log n+\log \binom{n}{p_{1} n p_{1} n \ldots p_{l} n}
$$

With $h\left(p_{1}, \ldots, p_{l}\right) \triangleq \sum_{i=1}^{l} p_{i} \log \frac{1}{p_{i}}$. Thus for a general (finitely supported discrete) distribution,

$$
H(X)=\sum_{i \in \Omega} \operatorname{Pr}[x=i] \log \frac{1}{\operatorname{Pr}[x=i]}
$$

Exercise 5. Similarly to the Bernoulli case, show that $H(X) \geq h\left(p_{1}, \ldots, p_{l}\right)$ in the multinomial case to formally conclude the proof.
Exercise 6. Suppose a fixed size encoding is used, but a fraction of error γ is allowed. Precisely, change the definition for a valid pair to require

$$
\text { error }=\operatorname{Pr}\left[D_{n}\left(E_{n}(\underset{\sim}{x})\right) \neq x\right] \leq \gamma
$$

Show that the definition of $H(X)$ does not change. Further, show that γ is exponentially small in n.

5 Asymptotic Equipartition Principle

In both the Bernoulli and multinomial cases we saw that the optimal encoding consisted of finding a subset of Ω over which the distribution of encodings was uniform. The Asymptotic Equipartition Principle (AEP) generalizes this notion formally:
Theorem 7 (Asymptotic Equipartition Principle). For every finite set Ω, every P_{X}, and every $\varepsilon>0$, for sufficiently large n,

$$
\left.\begin{array}{rl}
\exists S \subseteq \Omega^{n} \text { s.t. 1. } & \operatorname{Pr}_{\underset{\sim}{x} \sim P_{X}^{n}}[\underset{\sim}{x} \notin S] \leq \varepsilon \\
\text { 2. } \forall \underset{\sim}{\omega} \in S & \frac{1}{|S|^{1+\varepsilon}} \leq \operatorname{Pr}_{\sim} \sim P_{X}^{n}
\end{array} \underset{\sim}{x}=\underset{\sim}{\omega}\right] \leq \frac{1}{|S|^{1-\varepsilon}}
$$

Exercise 8. Identify the correspondence between parts 1. and 2. of the Asymptotic Equipartition Principle with the Bernoulli and Multinomial entropy derivations from class.
Exercise 9. Prove $|S| \approx 2^{H(X) n}$.

