
CS 229r Information Theory in Computer Science Jan 31, 2019

Lecture 2
Instructor: Madhu Sudan Scribe: Zachary Ziegler

1 Administrative Notes

• Sign up on Piazza if haven’t already

• Sign up for scribing. If needed, double up after spring break

• PS1 due Fri 2/8

• Follow http://people.seas.harvard.edu/ madhusudan/courses/Spring2019/

• Start thinking about potential final projects

2 Formal Definition of Entropy

Let X be a random variable with probability distribution PX . Last class we defined entropy informally
as “the number of bits needed, in expectation, to convey X”. Technically, this definition is incorrect, as
demonstrated by the following example:

Example 1. Let X1, ..., X100
iid∼ Bernoulli(p = 0.01). According to the axioms introduced in Lecture 1,

H(X1, ..., X100) =
∑100

i=1H(Xi) because each Xi is independent. One bit is needed to convey each Xi, so
the RHS has value 100. However, p = 0.01 is small, indicating that we could compress the joint set and
convey the information in many fewer bits. This implies that under the previous definition of entropy
H(X1, ..., X100) <

∑100
i=1H(Xi), violating the axioms.

The correct definition, in words, is:

Definition 2 (Entropy). Let X1, ..., Xn
iid∼ PX . The entropy of X is the limit as n → ∞ of the number of

bits needed, in expectation and on average, to convey the n iid samples of X.

To make this formal we introduce an encoder and decoder function. For X ∈ Ω, ∀n,

En : Ωn → {0, 1}∗

Dn : {0, 1}∗ → Ωn × {?}
s.t. ∀ω

˜
∈ Ωn Dn(En(ω

˜
)) = ω

˜

∀ω
˜

(1) 6= ω
˜

(2) En(ω
˜

(1)) not a prefix of En(ω
˜

(2))

An encoder and decoder paid (En, Dn) satisfying these requirements is called a valid pair. Note that the
prefix-free requirement is sufficient to ensure the mapping is invertible, but gives additional nice properties.
Given these mappings, we define entropy formally as

H(x) , lim
n→∞

 min
(En,Dn) valid

 1

n
E

x
˜
∼Pn

x

[∣∣∣∣En(x
˜
)

∣∣∣∣]

where

∣∣∣∣En(x
˜
)

∣∣∣∣ denotes the length of the binary encoding.

CS 229r Information Theory in Computer Science-1

http://people.seas.harvard.edu/~madhusudan/courses/Spring2019/

3 Binomial Entropy Computation

While the previous discussion gives the operational definition, in practice we want to compute entropy
directly from the distribution PX . First, we consider the case X ∼ Bernoulli(p). According to the definition

above, we need to consider X1, ..., Xn
iid∼ Bernoulli(p). In this case, the sample (X1, ..., Xn) forms a binary

sequence of length n. We use the following encoding procedure:

1. Alice sends Bob the number of ones in the sequence, k =
∑
Xi

2. Alice sends Bob the index of the correct binary sequence, among the
(
n
k

)
possibilities consisting of k

ones (they have previous agreed on an ordering).

The number of bits to convey an integer a is log a, therefore

E
x
˜
∼Pn

x

[∣∣∣∣En(x
˜
)

∣∣∣∣] = log n+ log

(
n

k

)

By the weak law of large numbers,

∀ε > 0, lim
n→∞

P
(∣∣∣∑Xi − np

∣∣∣ > ε
)

= 0

As the definition of entropy involves limn→∞, it suffices in the following discussion to consider k =∑
Xi = np with the understanding that additional terms exist which go to 0 as n→∞.
Introducing Stirling’s approximation,

Definition 3 (Stirling’s approximation). For large n, log n! = n log n−n log e+O(log n) where the logs are
base 2.

we conclude

log

(
n

pn

)
= h(p)n+O(log n)

h(p) = p log
1

p
+ (1− p) log

1

1− p

Exercise 4. Show that log
(
n
pn

)
= h(p)n+O(log n).

In the limit n→∞ the log n terms disappear, and dividing by n per the entropy definition gives

H(X) ≤ h(p)

To make this an equality we need to show H(X) ≥ h(p) ∀ (En, Dn). For any encoding, the receiver needs
to distinguish between

(
n
np

)
possible strings. By Chernoff bounds, ∀t

Pr

[∣∣∣∣En(x
˜
)

∣∣∣∣ ≤ log

(
n

pn

)
− t
]
≤ 2−t

=⇒ Pr

[∣∣∣∣En(x
˜
)

∣∣∣∣ ≥ log

(
n

pn

)
− t
]
≥ 1− 2−t

Thus for any valid encoding,

CS 229r Information Theory in Computer Science-2

lim
n→∞

 1

n

 E
x
˜
∼Pn

X

∣∣∣∣En(x
˜
)

∣∣∣∣

 ≥ lim

n→∞

{
1

n
log

(
n

pn

)
− t/n

}
= h(p)

The fixed t falls out in the limit and we conclude H(x) ≥ h(p). Combining with the previous result, we
find H(x) = h(p).

4 Multinomial Entropy Computation

Let Ω = {1, ..., l} and PX = (P1, ..., Pl), where Pi = Pr[X = i]. Again we take n iid samples X1, ..., Xn
iid∼ PX .

For large n, with high probability any string has p1n 1’s, p2n 2’s, ..., pln l’s. Any string with these counts
is equally likely, leading to an expected compressed length,

E
x
˜
∼Pn

x

[∣∣∣∣En(x
˜
)

∣∣∣∣] =l log n+ log

(
n

p1n p1n ... pln

)
=h(p1, ..., pl)n+ o(log n)

With h(p1, ..., pl) ,
∑l

i=1 pi log 1
pi

. Thus for a general (finitely supported discrete) distribution,

H(X) =
∑
i∈Ω

Pr[x = i] log
1

Pr[x = i]

Exercise 5. Similarly to the Bernoulli case, show that H(X) ≥ h(p1, ..., pl) in the multinomial case to
formally conclude the proof.

Exercise 6. Suppose a fixed size encoding is used, but a fraction of error γ is allowed. Precisely, change
the definition for a valid pair to require

error = Pr[Dn(En(x
˜
)) 6= x

˜
] ≤ γ

Show that the definition of H(X) does not change. Further, show that γ is exponentially small in n.

5 Asymptotic Equipartition Principle

In both the Bernoulli and multinomial cases we saw that the optimal encoding consisted of finding a subset
of Ω over which the distribution of encodings was uniform. The Asymptotic Equipartition Principle (AEP)
generalizes this notion formally:

Theorem 7 (Asymptotic Equipartition Principle). For every finite set Ω, every PX , and every ε > 0, for
sufficiently large n,

∃S ⊆ Ωn s.t. 1. Prx
˜
∼Pn

X
[x
˜
/∈ S] ≤ ε

2. ∀ω
˜
∈ S 1

|S|1+ε
≤ Prx

˜
∼Pn

X
[x
˜

= ω
˜

] ≤ 1

|S|1−ε

Exercise 8. Identify the correspondence between parts 1. and 2. of the Asymptotic Equipartition Principle
with the Bernoulli and Multinomial entropy derivations from class.

Exercise 9. Prove |S| ≈ 2H(X)n.

CS 229r Information Theory in Computer Science-3

	Administrative Notes
	Formal Definition of Entropy
	Binomial Entropy Computation
	Multinomial Entropy Computation
	Asymptotic Equipartition Principle

