
CS 229r Information Theory in Computer Science Feb. 5, 2019

Lecture 3
Instructor: Madhu Sudan Scribe: Prayaag Venkat

1 Administrative notes

1. Scribing: Due to the large class size, students may double or triple up on scribing for lectures. Madhu
will post further instructions.

2. Problem Set 1: Due Friday, February 8.

3. Office Hours: Madhu will hold office hours after lectures, in MD 339. See Piazza for Mitali’s office
hours.

2 Plan and Review

In this lecture, we covered the following topics that will give us more background on information theory:

1. Conditional entropy, Divergence, Mutual Information

2. Divergence Theorem and applications

Before proceeding, we review some concepts from the previous lecture. For a random variable X, its
entropy H(X) is the average number of bits needed to convey n i.i.d. copies X1, . . . , Xn of X in expectation.
Here, we are averaging over the n copies (dividing by n) and computing the expectation over the random
variables X1, . . . , Xn. We saw that if X is supported on a finite set Ω = [m] and its distribution PX is
written as PX = (p1, . . . , pm) (where pi ≥ 0 and

∑m
i=1 pi = 1), then we can write:

H(X) =

m∑
i=1

pi log
1

pi
= E
i∼PX

[log
1

pi
].

We can interpret this second expression as telling us that to encode element i, we are “budgeting” l∗i = log 1
pi

bits. We can then ask if this choice of {l∗i }mi=1 is the best set of encoding lengths. Is it possible that some
other {li}mi=1, where we encode i using li bits, achieves a smaller expected encoding length? Problem 4 on
Problem Set 1 (Kraft’s Inequality) asks you to investigate what constraints one must have on {li}mi=1 in order
to have a valid encoding. Any prefix-free encoding must satisfy

∑
i 2−li ≤ 1.

Given {li}mi=1, we can define qi = 2−li . It is easy to see that qi ≥ 0 and
∑
i qi ≤ 1 (if a corresponding

prefix-free encodinng exists, by Kraft’s inequality). Then the expected number of bits we need to send is∑
i pili =

∑
i pi log( 1

qi
). By the end of this lecture, we hope to show that:

∑
i

pi log(
1

qi
) ≥

∑
i

pi log(
1

pi
).

This tells us that the optimal way to compress PX is by using {l∗i }mi=1, rather than any other {li}mi=1.
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3 Axioms of Entropy

First, we set up some notation. X and Y are random variables supported on Ω. Their joint distribution is
PXY , written (X,Y ) ∼ PXY , which simply means Pr[X = α, Y = β] = PXY (α, β). The marginal distribu-
tion of X is PX , where PX(α) =

∑
β∈Ω = PXY (α, β), and similarly for Y . The conditional distribution of

Y given that X = α is PY |X=α, where PY |X=α(β) = PXY (α,β)
PX(α) . Finally, we write X⊥Y to denote that X,Y

are independent.
Now, recall the followings axioms. By the end of the lecture, we will formally prove all of them.

1. H(X) ≤ log |Ω|, with equality iff PX = Unif(Ω).

2. H(X,Y ) = H(X) +H(Y |X). This is the chain rule for entropy.

3. H(Y |X) ≤ H(Y ). This captures the intuitive fact that conditioning can only reduce entropy.

4 Conditional Entropy

Definition 1 (Conditional entropy). The conditional entropy of Y given X is the expected entropy of the
conditional random variable Y |X. Formally, it is defined as:

H(Y |X) = E
α∼PX

[H(Y |X = α)] =
∑
α∈Ω

PX(α)H(Y |X = α) =
∑
α,β∈Ω

PX(α)PY |X=α(β) log
PX(α)

PXY (α, β)
.

Exercise 2. Given this definition of conditional entropy, prove Axiom 2.

Proof. To do this, just expand out definitions:

H(Y |X) =
∑
α,β∈Ω

PX(α)PY |X=α(β) log
PX(α)

PXY (α, β)

=
∑
α,β∈Ω

PX(α)PY |X=α(β)(logPX(α)− logPXY (α, β))

=
∑
α∈Ω

PX(α) logPX(α) +
∑
α,β∈Ω

PX(α)PY |X=α(β) log
1

PXY (α, β)

= −H(X) +H(X,Y ).

Exercise 3. Recall that X⊥Y means PXY (α, β) = PX(α)PY (β) for all α, β ∈ Ω. Prove that if X⊥Y , then
H(Y |X) = H(Y ) (this is one part of Axiom 3).

Proof. Again, we expand out definitions and use X⊥Y to factor the joint probability distribution PXY .

H(Y |X) =
∑
α,β∈Ω

PX(α)PY |X=α(β) log
PX(α)

PXY (α, β)

=
∑
α,β∈Ω

PX(α)PY (β) log
PX(α)

PX(α)PY (β)

=
∑
α,β∈Ω

PX(α)PY (β) log
1

PY (β)

=
∑
β∈Ω

PY (β) log

(
1

PY (β)

)∑
α∈Ω

PX(α) = H(Y ).
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Combining these two exercises, we easily obtain the following intuitive result that entropy is multiplica-
tive.

Corollary 4. IF X1, . . . , Xn are i.i.d. copies of X then H(X1, . . . , Xn) = nH(X).

5 Divergence

We know return to the following central inequality:∑
i

pi log(
1

qi
) ≥

∑
i

pi log(
1

pi
).

From this, we can prove all the inequality parts of the axioms. The main technical tool is the following.

Theorem 5 (Divergence Theorem). Let P,Q be distributions on Ω. Then:

E
x∼P

[log
1

P (x)
] ≤ E

x∼P
[log

1

Q(x)
].

Moreover, equality is attained iff P = Q.

Note that in the inequality, both expectations are taken over P . First, if P (x) = 0, then we can just take
P (x) log 1

P (x) to be 0. Second, if P (x) > 0, but Q(x) = 0, then the right hand side of the inequality is ∞,

meaning that Q was not “expecting” x to appear.
To prove this Divergence Theorem, we will make use of Jensen’s Inequality.

Theorem 6 (Jensen’s Inequality). Let f : R→ R be a concave function and Z a real-valued random variable.
Then:

E
Z

[f(Z)] ≤ f(E
Z

[Z]).

Moreover, if f is strictly concave, then equality holds iff Z is deterministic (a constant).

We omit the proof; see the Wikipedia page for an explanation.

Proof of Divergence Theorem. Apply Jensen’s Inequality on the function f(x) = log x (which is strictly

concave) and the random variable Z = Q(X)
P (X) where X ∼ P . Then it follows that:

E
X∼P

[log
Q(X)

P (X)
] ≤ log E

X∼P
[
Q(X)

P (X)
] = 0.

Using linearity of expectation and rearranging, we get that:

E
x∼P

[log
1

P (x)
] ≤ E

x∼P
[log

1

Q(x)
].

Finally, the equality part of the theorem follows from the equality part of Jensen’s Inequality.

Revisiting the proof, we can extract the following useful definition.

Definition 7. (Kullback-Leibler Divergence) The KL divergence between two distributions P,Q is:

D(P ||Q) = E
X∼P

[log
P (X)

Q(X)
].

Roughly, D(P ||Q) represents the similarity of the two distributions. It describes the average increase
in bits one would need to encode X ∼ P under the mistaken belief that X ∼ Q. More explicitly, the KL
divergence satisfies the following nice properties:
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1. D(P ||Q) ≥ 0, with equality iff P = Q.

2. D(Pn||Qn) = nD(P ||Q), where Pn denotes the n-fold product distribution of P .

On the other hand, the KL divergence is not so well-behaved in the following ways:

1. It is not symmetric. That is, D(P ||Q) 6= D(Q||P ) in general.

2. It does not satisfy the triangle inequality. That is, D(P ||Q) � D(P ||R) +D(R||Q) in general.

3. D(P ||Q) is not bounded. This occurs, for example, when Q(x) = 0 < P (x) for some element x ∈ Ω.

5.1 Applications

We will now use the Divergence Theorem to prove the remaining parts of the axioms.

Exercise 8. Prove Axiom 1.

Proof. To do this, we will instantiate the Divergence Theorem with P = PX and Q = Unif(Ω):

H(X) = E
x∼PX

[log
1

PX(x)
]

≤ E
x∼PX

[log
1

Q(x)
]

= E
x∼PX

[log |Ω|] = log |Ω|,

where the inequality becomes an equality iff PX = Unif(Ω).

To prove Axiom 3, we will look at the divergence between PXY (the joint distribution) and PX × PY
(the product distribution of the marginals). Note that if X⊥Y , the PXY = PX × PY . From the chain rule,
we know that H(X,Y ) = H(X) + H(Y |X). Because PX × PY is a product distribution, the entropy of a
random variable distributed according to it is H(X) + H(Y ). If we show that H(X,Y ) ≤ H(X) + H(Y ),
then we may conclude that H(Y |X) ≤ H(Y ) (which is precisely Axiom 3).

Proceeding in this way, we know 0 ≤ D(PXY ||PX × PY ). Rearranging as in the proof of the Divergence
Theorem, we have:

H(X,Y ) = E
(x,y)∼PXY

[log
1

PXY (x, y)
] ≤ E

(x,y)∼PXY

[log
1

PX(x)PY (y)
] = H(X) +H(Y ),

where the last step follows by expanding the logarithm of the product and collecting terms appropriately.

6 Mutual Information

Definition 9. The mutual information I(Y ;X) of two random variables X,Y represents the amount of
information that X contains about Y . Formally, we define it to be I(Y ;X) = H(Y )−H(Y |X).

The following corollary is implied by the third axiom.

Corollary 10. I(Y ;X) ≥ 0, with equality iff X⊥Y .

Exercise 11. Verify that I(Y ;X) = I(X;Y ).

Proof. Simply apply the chain rule of entropy and expand the definitions:

I(Y ;X) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ) = H(X)−H(X|Y ) = I(X;Y ).
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Exercise 12. Let X ∼ PX and Y ∼ PY . Prove that I(X;Y ) = D(PXY ||PX × PY ), where PXY is the joint
distribution and PX × PY is the product distribution of X and Y .

Proof. We will expand out the definition of KL divergence and use the fact (see previous exercise’s proof)
that I(X;Y ) = H(X) +H(Y )−H(X,Y ):

D(PXY ||PX × PY ) = E
(x,y)∼PXY

[
log

PXY (x, y)

PX(x)PY (y)

]
= E

(x,y)∼PXY

[
log

1

PX(x)

]
+ E

(x,y)∼PXY

[
log

1

PY (y)

]
− E

(x,y)∼PXY

[
log

1

PXY (x, y)

]
= E
x∼PX

[
log

1

PX(x)

]
+ E
y∼PY

[
log

1

PY (y)

]
− E

(x,y)∼PXY

[
log

1

PXY (x, y)

]
= H(X) +H(Y )−H(X,Y ) = I(X;Y ).

6.1 Conditional Mutual Information

Definition 13. The mutual information I(Y ;X|Z) of two random variables X,Y conditioned on a third
random variable Z represents the amount of information that X|Z contains about Y |Z. Formally, we define
it to be I(Y ;X|Z) = Ez∼PZ

[I(Y ;X|Z = z)] = H(Y |Z)−H(Y |X,Z).

Similar to entropy, we have a chain rule for mutual information. If X1, . . . , Xn are i.i.d. copies of X,
then

I(Y ;X1, . . . , Xn) = I(Y ;X1) + I(Y ;X2|X1) + . . .+ I(Y ;Xn|X1, . . . , Xn−1).

7 More Inequalities

We now state two more inequalities. We did not have time to cover the proofs in lecture, but they follow
from the machinery we have developed so far.

Theorem 14 (Data Processsing Inequality). Let X → Y → X̂ be Markov chain (meaning X, X̂ are inde-
pendent, conditioned on Y ). Then:

I(X; X̂) ≤ I(X;Y ).

This inequality models the following scenario. X is a random variable we want to predict, based on
observing only the random variable Y . X̂ represents an estimate of X, based on Y . The inequality says that
our estimator cannot contain more information about X than does Y .

As a special case, one can take X̂ = g(Y ), where g is some (deterministic) function. Then I(X; g(Y )) ≤
I(X;Y ) describes a limitation on our predictor g.

As a side note, if H(X) is small, then this tells us that X should be “predictable”. Similarly, if H(X|Y )
is small, then X should be “predictable” from Y . Problem 5 of Problem Set 1 asks you to investigate this
intuition and prove Fano’s Inequality.
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