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1. Converse Coding Theorems

2. Efficiency in Coding

3. Linear Coding and Linear Compression

1 Converse Coding Theorems

1.1 Review of Channel Coding

Recall from last week: a general channel takes as input some X ∈ ΩX and outputs some Y ∈ ΩY . Its behavior
is specified by PY |X . We encode a message m ∈ {0, 1}k with an encoding function En : {0, 1}k → ΩnX and

recover the decoded message m̂ with a decoding function Dn : ΩnY → {0, 1}k, illustrated below:

X ∈ ΩX PY |X

Channel

Y ∈ ΩY

We define the rate R = k/n. The Capacity of the channel is defined as:

sup
R

lim
ε→0

lim
n→∞

{communication of Rn bits is possible with ε-error during n uses of channel}.

Previously, we proved that by simply picking random i.i.d En(m)i ∼ PX over (m, i) we can achieve:

R ≥ sup
PX

{I(X;Y )}

This means that supPX
{I(X;Y )} is a lower bound for the capacity. We now aim to prove that it is also an

upper bound, and thus, equal to the capacity.

1.2 Capacity Upper Bound

Let C0 = supPX
{I(X;Y )}. We have the following theorem:

Theorem 1. For the Binary Symmetric Channel BSC(p), for all ε > 0 there exists δ > 0 such that if rate
R > C0 + ε,

Pr[decoding error] ≥ 1− exp(−δn)

However, instead of proving this we will focus on general channels and prove that the decoding error cannot
be o(1):

Theorem 2. For all ε > 0 there exists δ > 0 such that if rate R > C0 + ε then

Pr[decoding error] ≥ δ
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Proof. Consider the complete encoding/decoding process for message m:

m Xn Y n m̂
Encode Channel Decode

Note that this is a markov chain (i.e. m̂|Y n ⊥ m,Xn).
Let δ = Pr[m 6= m̂]. We want to show that δ > 0. Consider H(m|m̂). We have that

nR = H(m) = H(m|m̂) + I(m̂;m) (1)

The first equality nR = H(m) comes from the fact that we’re considering a uniformly random message from
{0, 1}nR. By the data processing inequality:

I(m̂;m) ≤ I(Y n;m) ≤ I(Y n;Xn) =

n∑
i=1

I(Yi;X
n, Y1 . . . Yi−1)

Now note that
(Xn, Y1 . . . Yi−1)→ Xi → Yi

is again a markov chain, so

I(m̂;m) ≤
n∑
i=1

I(Yi;X
n, Y1 . . . Yi−1) ≤

n∑
i=1

I(Yi;Xi) ≤ nC0. (2)

(The last inequality comes from the fact that I(Yi;Xi) ≤ C0 no matter the distribution of Xi.)
To deal with the other term in (1), we note that Fano’s inequality implies that if Pr[m 6= m̂] is small, then
H(m|m̂) is small:

H(m|m̂) ≤ H(1m 6=m̂) + Pr[m 6= m̂] log(|{0, 1}nR|) ≤ 1 + δnR. (3)

Applying the bounds from (2) and (3) to (1) allows us to conclude:

nR ≤ 1 + δnR+ nC0 =⇒ (1− δ)nR ≤ 1 + nC0

=⇒ δnR ≥ n(R− C0)− 1 ≥ εn− 1

=⇒ δ ≥ ε/R− 1/n

2 Efficiency in Coding

We’ve shown that a random encoding reaches the optimal bound, but from an algorithmic efficiency stand-
point this is pretty bad. In practice, we want to consider the following:

1. Complexity of designing En and decoder (preprocessing)

2. Encoding time/space complexity

3. Decoding time/space complexity

Analysis for random encoder:

1. Space complexity and randomized time complexity to construct En is of order 2Rn since there are 2Rn

possible messages.
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2. Encoding process has 2Rn space complexity to store the lookups. The time complexity is polynomial
in n.

3. Decoding process also has 2Rn space complexity. The time complexity is deterministic.

To create a better algorithm, we can leverage the fact that the probability of decoding error in the above
case was exponentially low, since we only require that the error approaches 0. We focus only on the case of
the binary symmetric channel from now on.
The idea is to divide k-bit sequence into chunks of length e.g. l = 10 log k and then to apply Shannon’s
methodology independently to each chunk (encodes block to length L = l/(C0 − ε)). Now the preprocessing
cost and space (including randomness), as well as the encoding and decoding time/space complexities are of
order exp(L) = poly(k).

k

· · ·

` = 10 log k

· · ·

L = 10 log k
C0−ε

EL
EL

We can use the union bound on the error probability

Pr[∃ block which was decoded incorrectly] ≤ kPr[fixed block is decoded incorrectly].

Since the latter probability is exponentially small in k, this will go to 0. In practice, breaking up messages
into chunks is used all the time e.g. in CDs.

There are still some issues with the above solution:

• The running time of decoder is at least 1/error prob.

• Each block has to be big enough so that a bit flip is “detectable” to check for errors. Let ε = C0 −R.
We get that the length of each block must at least 1/ε2. So even to achieve 10% of capacity, we would
need blocks of length 100 which has running time on the order of 2100.

The first issue was resolved by “Concatenated codes” by Forney ’66. The rough idea is that instead of taking
the union bound over separate blocks, we use extra redundent encodings (“outer codes”) of a 2δ fraction
of the blocks to help correct errors. Thus instead of worrying about a single corruption, we worry about
corruption of a δ fraction and can use Chernoff bounds.
The second problem persisted until 2008, and was only proved in 2013. The solution uses Polar Codes, which
will be the focus of the next few lectures.

3 Linear Coding

In Linear coding, the encoding map is linear over F2:

En(m) = Gm

where G is n× k matrix (m has length k). To get a random linear encoding function we can simply pick G
at random.
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Claim 3. A random linear encoding achieves capacity over the binary symmetric channel with parameter p.
In this case, two different messages still have independent encodings, which it turns out is sufficient.

Exercise 4. Prove the above claim.

Proof. Problem in the third problem set.

Linear encoding has several benefits:

1. It only requires polynomial space.

2. It is likely to be injective: For all m, Pr[incorrect decoding] is small.

3. Error detection is easy. Given x ∈ Fn2 , we can easily find out if there exists m such that x = Gm.

Proposition 5. For all full rank G ∈ Fn×k2 , there exists full rank H ∈ Fm×n2 such that HG = 0 where
m = n− k.

Exercise 6. Prove the above proposition.

Proof. Viewed as a linear map G : Fk2 → Fn2 , the full rank condition translates to the fact that G is injective.
Consider the short exact sequence:

0→ Fk2
G−→ Fn2 → Fn2/ im(G)→ 0.

The dimension of the quotient is n − k = m. Therefore we may take an ordered basis for Fn2/ im(G) and
realize the quotient map as a map

H : Fn2 � Fm2 ,

which is an m× n matrix. Because H is surjective, it has full rank. Moreover, since the kernel of H is the
image of G, we have HG = 0.

Exercise 7. For x ∈ Fn2 , show that Hx = 0 iff there exists m such that x = Gm.

Proof. In our construction, we defined H so that the kernel of H is equal to the image of G. (In fact, this
holds for any H satisfying the requirements for H. If HG = 0 then ker(H) ⊃ im(G), but the full rank
conditions ensure that dim ker(H) = n −m = k = dim im(G). This shows that ker(H) = im(G).) Because
Hx = 0 means that x is in the kernel of H and existence of m such that x = Gm is x being in the image of
G, the two are equivalent.

Thus the point 3 above is equivalent to finding out if Hx = 0. It turns out a good way of constructing a
good G is to construct a good H. This means that linear compression =⇒ linear coding.

3.1 Efficient Linear Compression for Bern(p)n

Definition 8. An efficient linear compression for Bern(p)n consists of a pair of linear maps H ∈ Fm×n2

and D ∈ Fn×m2 with m ≤ (H(p) + ε)n. The efficient compression process maps Z to HZ and decompression
maps HZ to D(HZ). In addition, we want

Pr
Z∼Bern(p)n

[D(HZ) 6= Z] ≤ δ

for some δ.

Proposition 9. Linear coding over the binary symmetric channel reduces to linear compression for Bern(p)n.

Proof. We let G be such that HG = 0, and encode m as Gm, as follows:
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G
m

Encoding

Gmn

k

n

We receive Gm + Z where Z ∼ Bern(p)n. Recovering m is the same as recovering Z, which we can do by
multiplying by H:

D(H(Gm+ Z)) = D(HZ)

This is equal to Z with probability 1− δ.

The challenge now is to compress n Bern(p) bits to (H(p) + ε)n bits with decoding time polynomial in
n/ε. This is equivalent to encoding to n0 = poly(1/ε) bits with decoding time poly(1/ε).
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