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Lecture 8: A Gentle Introduction to Polar Codes
Instructor: Madhu Sudan Scribe: Mirac Suzgun

1 Bookkeeping

1.1 Outline for Today

1. Overview of Polar Codes.

2. Principal Claims.

3. Encoding + Decoding.

1.2 Administrative Issues

1. Professor Sudan will not be holding his office hours today.

2. Mitali has her usual office hours at 5.00 pm this evening.

3. Problem Set 2 is due Tuesday, February 26th.

2 Review: Linear Codes

Last time, we started setting up the stage for polar codes. We wanted to perform efficient correction of
errors for the Binary Symmetric Channel with parameter p, BSC (p). We know its capacity rate, and would
like to get ε-close to capacity using efficient coding algorithms.

We talked about the divide-and-encode technique: We basically took a large block, split it into smaller
chunks, and then encoded each individual small chunk separately. Working with small chunks helps us
manage running time, because it will perhaps be exponential in the size of the small blocks. However, we
shall note that no matter what we do, the size of our small chunks will be O(1/ε2), or some polynomial in

(1/ε), therefore our running time is exponential in parameter (i.e. O(21/ε
2

), which doesn’t get us close to
capacity with feasible algorithms.

We are interested in codes with efficient algorithms that take small chunks of information – it can be as
small as you want, but presumably of length at least 1/ε2 – and compress these small chunks. From now
on, our target theorem is the following:

Theorem 1. ∀p ∈ [0, 1], ∃ polynomials A,B such that ∀ε > 0, ∃ code of length n ≤ A(1/ε) that gets ε-close
to capacity with pre-processing, encoding, and encoding time ≤ B(1/ε).

We want these codes to be short, and we would like to decode them efficiently.
When working with a linear compression scheme, the following theorem is equivalent to the previous

theorem.

Theorem 2. Suppose p ∈ (0, 12 ). ∃ polynomials A,B such that ∀ε > 0, ∃n ≤ A(1/ε) and m ≤ (h(p) + ε) · n
with a linear compressor H ∈ Fm×n2 and an efficient decompressor D such that

Pr
Z∼Bern(p)n

[D(HZ) 6= Z] ≤ 1

n10
(1)
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Remark The term 1
n10 in Theorem 2 does not have a special meaning in the equation. Changing this

term will only change the polynomials A and B.

Remark Assuming that we have such a such good (i.e. linear) compression algorithm, how can we
construct a good coding algorithm? This was an open question until a decade ago. In 2008, we found a code
that works. In 2013, we found a proof that this code works. And now, in 2019, we are actually able to teach
in classroom.

Proposition 3. ∀p ∈ (0, 12 ). ∃δ > 0 such that ∀n, n bits can be compressed to length m ≤ h(p)·n+O(n1−δ).

Exercise 4. Try to come up with a non-linear but efficient scheme that achieves h(p) · n+O(n1/2).

Note that we still expect to see some loss, but it should not grow linearly in n.

2.1 Polar Codes [Arikan, 2008]

Let us now construct these magical codes. This idea is due to Erdal Arıkan, a Turkish information theorist.
Arıkan said, let me take two bits and try to show you how to compress them efficiently. Two bits! What
can we do with two bits? Remember that we can only perform a linear operation.

Suppose we have two bits U, V . One simple approach would be to take their (XOR) sum:

(U, V ) 7→ U + V (2)

But this is too ambitious; we definitely lost one bit of information. So, this will not work, unfortunately.
Let us try to add one more information into this. What information can we add? We need to add

something which is different that U + V . We need to do something which is linear. There are only two
(reasonable) options remaining, so we will pick one them and output V , in addition to U + V , that is:

(U, V ) 7→ (U + V, V ) (3)

Remark It is important to realize that this is a completely reversible operation. If we are given the pair
(U + V, V ), we can easily determine the values of U and V .

Arıkan noticed that this process does not compress yet, but it starts to differentiate the entropies.

Lemma 5. If U and V are i.i.d. random variables distributed according to Bern(p), where p ∈ (0, 12 ), then

H(U + V ) > H(U), H(V ) (4)

Suppose U, V
i.i.d.∼ Bern(p), with p ∈ (0, 12 ). Then, U + V ∼ Bern(p′). In fact, if 0 < p < 1

2 , then
0 < p < p′ < 1

2 . We can show that p′ = (2p)(1 − p). However, let us consider a simpler case, where
U, V ∈ {−1,+1}.

U, V =

{
+1 with probability 1− p
−1 with probability p

(5)

Now, consider the product of these two random variables, that is U · V .

UV 0 1
0 (1− p)2 (1− p)p
1 p(1− p) p2

Exercise 6. Analyzing E[U ] and E[UV ], show that 1
2 > p′ > p.
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Figure 1: Local Polarization

Conditioning tells us H(U, V ) = H(U) +H(V ). Therefore, we can write H(U + V, V ) as follows:

H(U + V, V ) = H(U + V ) +H(V | U + V ) (6)

If U, V
i.i.d.∼ Bern(p), then H(U) = H(V ) = h(p). On the other hand, U + V ∼ Bern(p′), where p′ > p

and H(V | U + V ) = H(U + V, V )−H(U + V ) = 2h(p)− h(p′) < h(p).

2.2 The Main Idea

We would like to squeeze our conditional entries as much as possible to 0. We want every bit of the message
to have an entropy rate close to 1 or 0. As we will see shortly, the bits with conditional entropy close to 0
will no longer be necessary, and at the end, we will send the bits whose conditional entropies are close to 1.

Let us start with n independent Bern(p) bits. This is the message that we would like to compress. For
the time being, let us assume that n is a power of 2, that is n = 2t, for some t ∈ N, however the algorithm
works just fine even without this assumption.

Let us pair these n bits arbitrarily. We then get (n/2) pairs of bits. For each of these ordered pairs of the
form (U, V ), we map (U, V ) to U + V and V , separately. We then group all the elements of the type U + V
and V together, while respecting their order. Now, all the elements in the first group are i.i.d. Bernoulli
random variables with parameter p′, where 0 < p < p′ < 1

2 . Therefore, H(U + V ) = h(p′) > h(p). Similarly,
all the elements in the second group satisfy the following condition: H(V | U + V ) < H(V ) = h(p).

It should be clear to our astute readers that this process increases the conditional entropy of one
group while decreasing that of the other. We therefore repeat this process until we have only single bits
W1,W2, · · · ,Wn. Under this scheme, the conditional entropy of first singleton W1 is very close to 1, whereas
the conditional entropy of the last singleton Wn is very close to 0. We now would like to make sure that the
singletons in the middle, whose entropies are in between 0 and 1, are as few as possible.

Claim 7. Suppose ∀j H(W0 | W<j) ∈ {0, 1}, where W<j denotes the set of W1,W2, · · · ,Wj−1. Then, we
claim that we solved the encoding problem.

Why does this scheme solve the encoding problem?
Let us note that:

H(W1,W2, · · · ,Wn) = H(Z1, Z2, · · · , Zn) (7)

= n · h(p) (8)

In fact,

H(W1,W2, · · · ,Wn) =
∑
j

H(Wj |W<j) (9)

= #{j | H(Wj |W<j) = 1} (10)

= n · h(p) (11)
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Figure 2: Polarization Process

Suppose S = {j | H(Wj |W<j) = 1}, then WS , (Wi1,Wi2 ,··· ,Wi|S|
), with S = {i1, i2, · · · , i|S|}.

Therefore, we simply output WS to compress the message Z.
However, there are still some issues we need to address:

1. H(Wj |W<j) ∈ {0, 1} is problematic.

2. How do we recover Z1, Z2, · · · , Zn from WS?

3. What is the set S?1

Let us focus on the first problem.

Theorem 8. Fix p. ∃γ = γ(t), δ = δ(t), and τ = τ(t) such that

Pr
j∼[n]

[after t steps H(Wj |W<j) ∈ (τ, 1− γ)] < δ. (12)

In other words, δ(t), γ(t), τ(t)→ 0, as t→∞.

1Today, we will ignore the pre-processing time, therefore we will not concern ourselves with the question of how to get S –
we assume, for the time being, that we can determine the set S in exponential time.
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Let us actually prove a stronger proposition:

τ(t) <

(
1

211

)t
︸ ︷︷ ︸

fast exp. decay

and δ(t), γ(t) ≤ (0.999)t︸ ︷︷ ︸
gentle decay

(13)

Suppose we have this theorem. How would we compress it?
It turns out that we should send all the bits with condition entropy H(Wj |W<j) between τ and 1.2

Now, let us define S , {j | H(Wj |W<j) > τ). Then,

|S| = |{j | H(Wj |W<j) ≥ 1− δ}|+ |{j | H(Wj |W<j) ∈ (τ, 1− δ)}| (14)

For the sake of simplicity, let T = {j | H(Wj |W<j) ≥ 1− δ}, then

n · h(p) ≥ H(WT ) ≥ |T |(1− δ) (15)

Therefore,

|S| = |{j | H(Wj |W<j) ≥ 1− δ}|+ |{j | H(Wj |W<j) ∈ (τ, 1− δ)}| (16)

≤ n · h(p)

1− γ
+ n · δ (17)

≥ n · h(p) + n · (γ + δ) (18)

The length of the compression is determined by γ and δ, so we want nγ, nδ < n1−δ ⇐⇒ γ, δ < n−δ.
Recall that we started with Z and mapped everything to W , followed by WS . What should we do with

the rest of the bits in WS?

Z →W →WS (Compression) (19)

Ẑ ← Ŵ ←WS (Decompression) (20)

Exercise 9. Show the explicit matrix that maps Z →W .

If H(WS |WS) = β is very small, we can guess WS , given WS .
Remark Recall that we have shown in the first problem set that the conditional entropy of Y is small
given X if and only if Y is predictable given X.

We can say H(WS |WS) ≤ |S| · τ ≤ nτ .
Want our β to be:

β ≤ 1

n10
⇒ nτ ≤ 1

n10
⇒ τ ≤ 1

n11
=

1

(2t)11
=

(
1

211

)t
(21)

Theorem 10. Fix p ∈ (0, 12 ). ∀C ∈ N, ∃β < 1 such that ∃γ = γ(t), δ = δ(t), and τ = τ(t) with γ, τ ≤ C−t

and δ < βt satisfying

Pr
j∼[n]

[after t steps H(Wj |W<j) ∈ (τ, 1− γ)] < δ. (22)

This leads to a very efficient algorithm, with encoding time at most O(n log n), given that we know the
set S. Next time, we will prove this new theorem and discuss decoding.
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2Send (γ + δ) fraction. Since δ is going to zero, we can surely afford it.
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