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2 Polar Codes Wrap up

Recall that in our analysis of polar codes, we are attempting to show the polarization properties of the
bounded martingale Xi , H(Ziji |Z

i
<ji

). We defined two notions of polarization: local polarization, charac-
terized by local single-step properties, and strong polarization, characterized by long-term properties.

2.1 Local Polarization

A sequence X0, ..., Xt polarizes locally if it satisfies two properties:

1. Variance in the Middle: ∀τ,∃σ s.t. ∀i, if Xi−1 ∈ (τ, 1− τ), then Var(Xi|Xi−1) ≥ σ2

2. Suction at the ends: ∃θ > 0,∀c,∃τ s.t. ∀i, if Xi−1 ≤ τ , then Pr[Xi <
Xi−1

c ] ≥ θ. On the high end, a
similar condition holds for 1− x.

2.2 Strong Polarization

A sequence X0, ..., Xt polarizes strongly if:

∀c,∃β < 1 s.t. ∀t,Pr [Xt ∈ (c−t, 1− c−t)] < O(βt)

Theorem 1. Local Polarization =⇒ Strong Polarization

This is useful because we don’t need to understand long term behavior, just the next step.

2.3 Back to our Martingale

The quantities we’re concerned with H(Zi−1a |Zi−1a ) take the forms H(U |A), H(V |B), H(U + V |A,B), and
H(V |A,B,U + V ). Why should our martingale show local polarization effects? To get a sense of what’s
going on, we will compare H(U)&H(V ) with H(U + V )&H(V |U + V ).

Setup: 0 < p < 1
2 ; U, V ∼ Bern(p);Xi−1 = h(p)

Then, U + V ∼ Bern(2p(1-p)), so w.p. 1
2 , Xi = h(2p(1− p))
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1. Variance in the middle
τ < h(p) < 1− τ

ε2,τ < p <
1

2
− ε1,τ

=⇒ ε′2,τ ≤ 2p(1− p)− p

=⇒ h(2p(1− p))− h(p) ≥ ε′′2,τ

2. Suction at the ends

• High End

p =
1

2
− ε =⇒ h(p) ≈ 1− θ(ε2)

2p(1− p) =
1

2
− θ(ε2)

h(2p(1− p)) ≈ 1− θ(ε4)

Satisfied if ε is sufficiently small.

• Low End

p→ 0 =⇒ h(p) ≈ p log
1

p

2p(1− p) ≈ 2p

2h(p)− h(2p)� h(p)?

2p log
1

p
− 2p log

2

p
≈ 2p� p log

1

p

Satisfied if p is sufficiently small.

The conditional versions of the above statements can be shown to hold true (albeit with quite a bit more
work), and these allow us to establish Theorem 2.

Theorem 2. Our martingale polarizes locally.

The implication is that we have a nice coding and compression with n ≈ poly( 1
ε ). The crux is that O(βt) is

exponentially small.

Next steps:

1. We’ve proved that Pr[error] < polynomial. Is that the best we can do?

2. What if errors are not independent? We can still use polar codes, but need to be more careful with
construction and analysis.

3 Communication Complexity

Communication Complexity encapsulates a broad class of questions and was introduced in Andrew Yao’s
seminal paper in 1979. The general setup is there are multiple players, each with private information. The
goal is to compute a joint function of the private information while minimizing messages exchanged between
players.

CS 229r Information Theory in Computer Science-2



3.1 Definitions

3.1.1 Setup

• Two players: Alice and Bob

• Function f : {0, 1}n × {0, 1}n → R known to both players.

• Alice and Bob exchange messages. Messages from Alice to Bob denoted bi = fi(x, b<i). Messages from
Bob to Alice denoted bi = fi(y, b<i).

• Finally, Bob outputs o(y, b1, ..., bk), presumably equal to f(x, y).

(f1, ..., fk, o) determine the protocol for communication π.

Goal: Design π that computes f and minimizes k. Denote CC(f) = min # of bits exchanged needed to
compute f . Note we don’t care about computational complexity of any of the fi, only care about the number
of bits exchanged.

Variants:

1. Bounded number of rounds: communicate with long messages and minimize number of bits exchanged
subject to upper-bound on number of rounds.

2. One-way communication: Alice sends messages to Bob, Bob outputs f(x, y)

3.2 A Trivial Example: Parity

f(x, y) = ⊕ni=1(xi ⊕ yi)

• Alice sends ⊕ni=1xi to Bob.

• Bob outputs (⊕ni=1xi)⊕ (⊕ni=1yi)

1-bit communication protocol solves the problem: CC(f) = 1
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3.3 Analysis

Let Mf be the 2n × 2n matrix representation of f where rows correspond to Alice’s input and columns
correspond to Bob’s input.

Idea: Each message partitions the matrix of possible sets of inputs. At every stage of the exchange, the set
of (x, y) that is consistent with the transcript so far form a ”rectangle” (S ⊆ {0, 1}n, T ⊆ {0, 1}n)

After k bits of communication, have 2k rectangles and the value of f should be the same for each remaining
consistent x, y. Bob should therefore be able to output f(x, y).

Equivalently, 2k rectangles cover all the 1s in Mf . Note, since rectangle matrices are of rank 1. Since Mf is
the sum of 2k matrices, each of rank 1, Mf has rank ≤ 2k.

Proposition 3. CC(f) ≥ log rank(Mf )

Conjecture (still open). ∀f,CC(f) ≤ poly(log rank(Mf ))

Thus, generally hard problems have Mf with high rank.

Mf = I2n×2n =⇒ f(x, y) = EQ(x, y)

However, we mostly care about randomized communication, not deterministic.

3.4 Randomized Communication Complexity

In the randomized setting, Alice and Bob can independently toss a coin and communicate accordingly.
Randomness can be either private or public.

1. Private Coins PRIV-CC(f): Alice and Bob are allowed to toss coins. At the end, Bob must output
f(x, y) correctly w.p. ≥ 2

3 .

2. Public Randomness RCC(f): Alice and Bob share a random string and use it to communicate.

We have bounds on each in relation to the others:

Proposition 4. CC(f) ≤ 2O(PRIV-CC(f))

Proposition 5. PRIV-CC(f) ≤ RCC(f) +O(log n)

3.5 Randomized Protocol for EQ

EQ is tight for the inequalities above.

Assume we have an error correcting code with encoder E : {0, 1}n → {0, 1}2n, where for every x 6= y,
#{i|E(x)i 6= E(y)i} ≥ n

5 (code disagrees in a lot of bits when x 6= y).

Public randomness: i chosen by common randomness. Alice sends E(x)i. Bob checks it with E(y)i. Repeat
this process O(1) times.

Private randomness: Alice chooses i randomly, and sends it along with E(Xi) to Bob for O(log n) cost.

Thus, EQ is actually considered very easy in the randomized sense.

Side note: often people phrase this protocol as hashing (and the log n bits in the private randomness case is
needed to send which (random) hash function you choose).
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3.6 Hard Problems

1. F2 Inner Product

IP(x, y) =

n∑
i

xiyi(mod 2)

Requires linear communication, even with randomness

2. Set-Disjointness
x, y are characteristic vectors of sets S, T ⊆ [n]. Do they intersect?

Disj(x, y) = ∨ni=1(xi ∧ yi)

This problem was very elusive to prove lower bounds for, and is very popular - analogous to SAT in
computational complexity. It is linear, even with randomness, which we will see in later lectures.
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