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1 Outline

The topic for today’s lecture is communication complexity:

1. Upper Bounds

2. Lower Bounds for IP (Inner Product)

• Distributional Complexity

• Discrepancy

• Spectrum

2 Communication Complexity Review

Recall that our model of communication is for Alice and Bob, given x ∈ {0, 1}n and y ∈ {0, 1}n respectively,
to send binary strings to each other in rounds in order for Bob to compute f : {0, 1}n × {0, 1}n → S on
(x, y), where S is a finite set often chosen to be {0, 1}. We can also add randomness to this model in two
ways: either by public randomness, where a random string is available to both Alice and Bob simultaneously,
or by private randomness, where a random string is available to Alice and not Bob and similarly a random
string is available to Bob but not Alice.

As before, we have the following definitions.

Definition 1 (Communication Complexity). We define the communication complexity of f : {0, 1}n ×
{0, 1}n → S to be

CC(f) , min
π
{# bits exchanged by π},

where the min is taken over all protocols π computing f . Similarly, we define the private randomness
communication complexity of f to be

CCPriv(f) , min
π
{# bits exchanged by π with private randomness},

and the public randomness communication complexity of f to be

CCPub(f) , min
π
{# bits exchanged by π with public randomness}.

Note that it’s clear from these definitions that

CCPub(f) ≤ CCPriv(f) ≤ CC(f),

for any f . We also have the following inequalities in the other direction:

Proposition 2. For all f : {0, 1}n × {0, 1}n → S, we have CCPriv(f) ≤ CCPub(f) +O(log(n)).

Proposition 3. For all f : {0, 1}n × {0, 1}n → S, we have CC(f) ≤ 2O(CCPriv(f)).

Note that these two inequalities are tight for Equality(x, y).
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3 Upper Bound Examples

3.1 Hamming Distance

Consider the function

HammingDistk(x, y) =

{
1 if ∆(x, y) ≤ k,
0 if ∆(x, y) > k,

for some parameter k, where ∆(x, y) = #{i : xi 6= yi} is the Hamming distance between x, y ∈ {0, 1}n. It
turns out that there is a Θ(k log k+ 1) bit protocol with shared randomness (does not depend on n). Today,
we will see a Θ(k2+1) bit protocol with shared randomness. Note that if k = 0, this is the Equality function,
which we know has Θ(1) public randomness communication complexity, so this protocol is reasonably tight
for small k.

3.2 Small Set Disjointness

Consider the Small Set Disjointness problem, where Alice gets S ⊆ [n] and Bob gets T ⊆ [n] (both represented
as characteristic vectors) with the condition that |S|, |T | ≤ k for some parameter k. The goal is to output
whether S ∩T = ∅. Hastad and Wigderson give a Θ(k) bit protocol, but we will see a Θ(k log k) bit protocol
today.

3.3 Protocols using hash functions

Both of these problems can be solved by protocols that publicly pick a completely random hash function
h : [n]→ [m], which can be shown to have the property that for all W ⊆ [n] with |W | ≤ k, we have

Pr
h

[∃i 6= j ∈W s.t. h(i) = h(j)] ≤ 1

100
.

for some m = O(k2).

Exercise 4. Prove that a unformly random function h : [n] → [m] satisfies the above property for some
m = O(k2).

For Small Set Disjointness, we can apply this to W = S ∪ T , and Alice can send {h(i)}i∈S to Bob,
which takes |S| logm ≤ O(k log k) bits. Since the probability of any collision is small, we know that Bob can
recover S with high enough probability and thus compute whether S ∩ T = ∅.

For HammingDistk, for all j ∈ [m], Alice can compute

uj =
⊕

i∈h−1(j)

xi

and send the message {uj}j∈[m]. Then, Bob can similarly compute

vj =
⊕

i∈h−1(j)

yi,

and check whether ∆(u, v) ≤ k. If ∆(x, y) ≤ k, then x and y differ in at most k indices ⊆ {i1, . . . , ik}, which
implies that u and v differ only on a subset of the indices {h(i1), . . . , h(ik)}, which implies ∆(u, v) ≤ k. If
∆(x, y) > k, then one can show that ∆(u, v) > k with probability ≥ 2/3, which completes the analysis of
this Θ(k2 + 1) bit protocol for HammingDistk.
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3.4 “Distance” problems in Rn

Here, Alice and Bob are given x, y ∈ Rn respectively with ‖x‖2 = ‖y‖2 = 1. First, consider the function

f(x, y) =

n∑
i=1

xi − yi

where we allow an additive error of up to ε.

Remark The requirement that ‖x‖2 = ‖y‖2 = 1 is only so that the error term ε makes sense, as otherwise,
we could scale x and y up without any change in ε, which would be too good to be true.

For this function, the protocol is easy: Alice sends (
∑
xi)± ε in O(log(1/ε)) bits, and Bob can compute

the rest.
What about the function

f(x, y) =

n∑
i=1

(xi − yi)2

with an additive error of up to ε? Here, the cross-terms xiyi cause us difficulty. However, with randomness,
Alice and Bob can overcome this obstacle. Specifically, Alice can send (

∑
x2i )±ε, similar to before, and now

she can also send
∑
Rixi, where R1, . . . , Rn are “bits” identically and independently distributed uniformly

over {−1, 1}. For Bob to decode this, note that

E
R

(∑
i

Rixi

)∑
j

Rjyj

 = E
R

[∑
i

R2
i xiyi

]
+ E
R

∑
i6=j

RiRjxiyj


=
∑
i

xiyi + 0,

where the last equality comes from the fact that R2
i = 1 and ER[RiRj ] = 0 for all i 6= j. Therefore, Bob

can take (
∑
iRixi) from Alice and

(∑
j Rjyj

)
directly from its input and multiply them to get an estimate

for
∑
i xiyi. Given that Alice sends

∑
i x

2
i and Bob can deduce

∑
j y

2
j , Bob can estimate

∑
j(xj − yj)2. For

this to work with high probability, we need to squash the variance of the random variable
∑
i 6=j RiRjxiyj .

We can squash this variance successfully with O(1/ε2) bits of communication. In fact, this is the best we
can hope for:

Exercise 5. Prove that 1/ε2 bits are required for any protocol to compute f(x, y) =
∑n
i=1(xi − yi)2 up to

an additive error of ε.

In summary, for the function f(x, y) = (
∑n
i=1 xi − yi)± ε, there is a protocol that uses O(log(1/ε)) bits,

but for the function f(x, y) = (
∑n
i=1(xi − yi)2)± ε, the best protocol uses Θ(1/ε2) bits.

4 Lower Bounds for Inner Product

Recall that IP is defined as

IP(x, y) ,
n∑
i=1

xiyi mod 2,

for x, y ∈ {0, 1}n. How can we prove a Ω(n) lower bound on communication complexity of IP with shared
randomness? One avenue to pursue would be to look at the rank of the matrix MIP, but we saw for Equality
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that rank was not helpful in proving lower bounds for protocols with randomness.1 So, we need something
new.

4.1 Distributional Complexity

Idea: Put a distribution µ on {0, 1}n × {0, 1}n. We can define

δµ(f, g) , Pr
(x,y)∼µ

[f(x, y) 6= g(x, y)]

and

Dε,µ(f) , min
g s.t. δµ(f,g)≤ε

CC(g).

4.2 Randomized Protocol =⇒ Distributional Deterministic Protocol

With this setup, we can prove distributional lower bounds by putting some distribution µ on {0, 1}n×{0, 1}n,
and prove that no deterministic protocol π using k bits achieves small error on (x, y) ∼ µ.

Why is this helpful?

Proposition 6. For all functions f : {0, 1}n × {0, 1}n → S and distributions µ over {0, 1}n × {0, 1}n, we
have

CCPub(f) ≥ Dε,µ(f)

O(log(1/ε))
.

Thus, if we have a lower bound on k for any deterministic protocol computing f achieving small error
for some distribution µ, then we must have a lower bound for any random protocol with public randomness
computing f .

Proof of Proposition 6. Suppose we have some k-bit protocol π that gets error less than 1/3 probability for
every (x, y) ∈ {0, 1}n × {0, 1}n. By repeating this protocol O(log(1/ε)) times and taking the majority of
the outputs, we have a protocol π̃ using O(k log(1/ε)) bits that errors with probability ≤ ε. That is, for all
(x, y), we have

E
R

[1f(x,y)6=π̃(x,y,R)] ≤ ε,

where the randomness R denotes the randomness of the protocol. Now, we can take the expectation over µ
and switch the order to get

ε ≥ E
(x,y)∈µ

E
R

[1f(x,y) 6=π̃(x,y,R)]

= E
R

E
(x,y)∈µ

[1f(x,y) 6=π̃(x,y,R)].

This means that there exists some R such that E(x,y)∈µ[1f(x,y)6=π̃(x,y,R)] ≤ ε, i.e. Pr(x,y)∈µ[f(x, y) 6=
π̃(x, y,R)] ≤ ε. Now, we can hardcode R into π̃ to get a deterministic protocol π′ using O(k log 1/ε)
bits, where we have Pr(x,y)∈µ[f(x, y) 6= π′(x, y)] ≤ ε, i.e. δµ(f, π′) ≤ ε, as desired.

The idea here is that we can view randomized protocols as distributions over deterministic protocols.

1There is a related quantity to rank called approximate rank, whose log lower bounds randomized communication complexity.
However, it was shown in 2018 [1] that the log of approximate rank and randomized communication complexity are not
polynomially related, refuting the log-approximate-rank conjecture.
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4.3 Discrepancy

Now, we would like to show Dµ,ε(IPn) ≥ Ω(n) for some distribution µ, as from the proposition above,
this would give a Ω(n)/ log(1/ε) lower bound on the number of bits of any protocol computing IPn with
public randomness. In this case, thankfully choosing µ to be uniform will suffice, i.e. µ(x, y) = 4−n for all
x, y ∈ {0, 1}n.

Suppose π is a protocol for f using k bits, with error probability ≤ ε over µ (or equivalently, Dµ,ε(f) ≤ k).
Without loss of generality, we can assume that the final bit communicated by π is the function value (as this
adds at most 1 round and 1 bit). Considering the usual matrix MIP, we know that the k bit protocol splits
the matrix into K = 2k rectangles R1, . . . , RK , where by a rectangle, we mean a Cartesian product of some
S ⊆ [n] and T ⊆ [n]. Let pi denote the probability that π is correct and ends up in rectangle Ri, and let εi
denote the probability that π is wrong and ends up in rectangle Ri. Then, we have

K∑
i=1

pi ≥ 1− ε,

K∑
i=1

εi ≤ ε.

Subtracting the two inequalities, we have
∑K
i=1 pi − εi ≥ 1 − 2ε, which implies that for some i ∈ [K], we

have

pi − εi ≥
1− 2ε

K
=

1− 2ε

2k
. (1)

Now, we are ready for another definition. In addition to the matrix Mf (x, y) = f(x, y) ∈ {0, 1} as we saw in
the last lecture, we can now define

Mf,µ(x, y) , µ(x, y)(−1)f(x,y).

Translating equation (1) into this new notation, for rectangle Ri, which we can say is given by rectangle
S × T , we have ∣∣∣∣∣∣

∑
x,y∈{0,1}n

1S(x)1T (y)Mf,µ(x, y)

∣∣∣∣∣∣ = |pi − εi| ≥
1− 2ε

2k
.

This motivates the following definition:

Definition 7 (Discrepancy). We can define the discrepancy of f with respect to µ to be

Discµ(f) , max
S,T⊆[n]

∣∣∣∣∣∑
x,y

1S(x)1T (y)Mf,µ(x, y)

∣∣∣∣∣ .
We have just shown:

Proposition 8. If Dµ,ε(f) ≤ k, then we have

Discµ(f) ≥ 1− 2ε

2k
.

Our goal now is to show that Discµ(IPn) is small, as this would imply Dµ,ε(f) is big by (the contrapositive
of) proposition 8, which would imply that CCPub(f) is big by Proposition 6.
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4.4 Spectrum bounds Discrepancy

We can bound Discµ(IPn) directly, where we represent S, T by characteristic column vectors U, V ∈ {0, 1}2n .
Recall that µ is uniform over {0, 1}n × {0, 1}n. We have

Discµ(IPn) = max
S,T⊆[n]

∣∣∣∣∣∑
x,y

1S(x)1T (y)MIPn,µ(x, y)

∣∣∣∣∣ (2)

= max
U,V ∈{0,1}2n

∣∣U>MIPn,µV
∣∣ (3)

≤ max
U,V ∈R2n

‖U‖2,‖V ‖2≤2
n/2

∣∣U>MIPn,µV
∣∣ (4)

= 2n max
U,V ∈R2n

‖U‖2,‖V ‖2≤1

∣∣U>MIPn,µV
∣∣ (5)

= 2nλmax(MIPn,µ). (6)

Thankfully, MIPn,µ has enough structure to make computing its maximum eigenvalue tractable. In fact,

Exercise 9. MIPn,µn = (MIP1,µ1
)⊗n, where µi is uniform over {0, 1}i × {0, 1}i.

Corollary 10. λmax(MIPn,µn) = (λmax(MIP1,µ1
))
n

.

We can explicitly write MIP1,µ1 as

MIP1,µ1 =

[
1/4 1/4
1/4 −1/4

]
as µ1 = 1/4 for all inputs, and (−1)xy is −1 if x = y = 1 and 1 otherwise. A computation shows that
λmax(MIP1,µ1) = 1/

√
8, so λmax(MIPn,µn) = (1/

√
8)n. Thus, plugging back into (6), we get

Discµ(IPn) ≤ 2nλmax(MIPn,µ) = 2−n/2.

Thus, for k = n/2−1 and ε < 1/4, we can apply the contrapositive of Proposition 8 to get that Dµ,ε(IPn) ≥
n/2− 1. For constant ε < 1/4 and applying Proposition 6, we have CCPub(IPn) ≥ Ω(n), as desired.
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