
CS 229r Information Theory in Computer Science March 7, 2019

Lecture 12
Instructor: Madhu Sudan Scribe: Albert Chalom

1 Book Keeping

1.1 Admin

• Project link on Canvas.

• Express interest

1.2 Today

• Set disjointness

• Information complexity

1.3 References

We’ll focus on:

• [Bar-Yossef, Jayram, Kumar, Sivakumar]

Previous work:

• [Babai, Frankl, Simon]

• [Kalyanasundaram, Schnitger]

• [Razborov]

2 Disjointness

We will first consider the Disjn problem, which asks on two n-length strings X and Y , is there some index
i, such that Xi = Yi = 1. This is equivalent to Xi ∩ Yi = 1. We formally define the problem below:

Definition 1. Disjn(X,Y) = 1 if ∃i st Xi = Yi = 1 and 0 otherwise.

Exercise 2. ∀independentXandY,∀µ = µx × µy show a protocol with error ≤ ε and Õ(
√
n)

This implies that hardness needs X 6⊥ Y .

3 Conditional Mutual Information

Definition 3. For (X,Y, Z) jointly distributed, I(X,Y |Z) is the information about X from Y conditioned
on Z.

We can rigorously measure this as I(X,Y |Z) = EZ∼Pz
[I(X|Z=z, Y |Z=z] = H(X|Z)−H(X|Y, Z).

Recall that with entropy we had a property that H(X|Z) ≤ H(X). However, there is no definitive
relationship between information and conditional information (e.g I(X,Y ) and I(X,Y |Z)).
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Example 4. Consider the distribution, X = Y = Z with Z ∈ {0, 1}n
I(X,Y ) = n, I(X,Y |Z) = 0 so here conditioning reduced information.

Example 5. Consider X ⊥ Y,Z = X ⊕ Y , with X,Y ∈ Unif{0, 1}n
There here I(X,Y ) = 0, I(X,Y |Z) = n so here conditioning increased information.

Example 6. Consider X ↔ Y ↔ Z as a Markov Chain such (so X and Z are independent given Y), then
I(X,Y ) ≥ I(X,Y |Z) and I(X,Z|Y ) = 0.

Exercise 7. Prove the above example. Hint use that H(X|Y,Z) = H(X|Y )

3.1 Motivation

Fix a randomized protocol Π that epsilon-computes f, if it computes f with error at most epsilon for all
inputs (x,y).

Goal: How much does an observer learn about the inputs from watching the interaction?

3.2 Example protocol

Consider the following protocol with R as public randomness.
Alice Bob
x,R y,R

R⊕X−−−→
f(x,y)←−−−−

In this case, I((X;Y );R⊕X, f(X,Y )) ≤ H(f(X,Y )) so the observer learns little because they can’t see
the randomness that Alice and Bob both see.

Therefore we should condition on public Randomness R, but not on any private randomness RA or RB

4 Information Complexity

Definition 8. Information complexity is defined as the amount of information an observer learns about
(X,Y) from the transcript of communication, over the given distribution mu. We assume the observer has
access to public randomness but not private randomness.

Mathematically, for a protocol, ICµ(Π) = I(XY,Π|R).
For a function ICµ(f) = minΠst.Π ε-computes f(ICµ(π))

If Π is a k-bit protocol that ε-computes f, ICµ(f) ≤ k

4.1 Plan

ICµn(Disjn) = Ω(n) (we will prove)

The following statements are true, but we won’t prove them here. Instead we will prove something
analagous for conditional IC (to be defined below).

• ICµn
(Dsijn) ≥ nICµ1

(Disj1)

• ICµ1(Disj1) = Ω(1)
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4.2 One dimensional binary disjointness

Disj1(u, v) = u ∧ v

Example 9. An intuitive protocol for computing And would be
Alice Bob
u v

u−→
u∧v←−−

If u = 0 then an observer only learns one bit (u), but if u = 1 then both bits are revealed to an observer,
so on average 3

2 bits are revealed.

This raises the question can we do better? If u = v = 1 then both bits are revealed, so ideal is when u
or v are zero, the ideal case is we don’t learn anything about the other bit.

Example 10. Now consider the following randomized protocol.
Alice picks ta ∈ [0, 1] at random, and Bob picks tb ∈ [0, 1] at random. Then at time ta Alice sends 0 to

Bob if U = 0, and at time tb Bob sends 0 to Alice if V = 0. The protocol ends after the first bit is sent, so
if U = V = 0, Alice will only send her bit if ta < tb and Bob will only send his bit if tb < ta. We assume
that bits are sent instantly and since we sample from a continuous distribution ta will never equal tb.

The idea here is if (uv) = 00, 01, or 10 then we only learn one of u or v, but if (uv) = 11 we learn both
u and v, so on average 5

4 bits are learned.
This analysis is a bit loose because after we wait for longer, we would bias the other bit to be more likely

to be 1.

Exercise 11. Come up with a tight bound for the protocol.

4.3 Proof of ICµ(Disjn) = Ωn

Let µ be the following distribution with (Xi, Yi) iid with

(Xi, Yi) =

 00 with prob 1/2
01 with prob 1/4
10 with prob 1/4

Next consider the following way of sampling this distribution with (X,Y, Z) with Z ∼ Unif({0, 1}n

for i = 1 to n do

if Z[i] = 0 then X[i] = 0, Y[i] ~ Unif{0,1}

if Z[i] = 1 then Y[i] = 0, X[i] ~ Unif{0,1}

4.3.1 CIC (Conditional Information Cost)

CICµ(Π) = I((X,Y ); Π|R,Z).
We will prove the following two statements

1. CICµ(Disjn) ≥ n× CICµ(Disj1) (today)

2. CICµ(Disj1) = Ω(1) (next class, non-trivial)

Observation 12. Consider a Markov Chain Π↔ (X,Y )↔ Z), then Π|X,Y ⊥ Z|X,Y .
Then ICµ(Π) ≥ CICµ(Π)
To see this we know I((X,Y ),Π)|R) ≥ I((X,Y ),Π|R,Z) and ICµ(Π) = I((X,Y ),Π)|R) and CICµ(Π) =

I((X,Y ),Π|R,Z)
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I((X,Y ),Π|R,Z) = H(X,Y |R,Z)−H(X,Y |Π, R, Z)

H(X,Y |R,Z) =
n∑
i=1

H(Xi, Yi|R,Z,X<i, Y<i =
n∑
i=1

= H(Xi, Yi|Zi) =
n∑
i=1

H(Xi, Yi|R,Z)

H(X,Y |Π, R, Z) =
n∑
i=1

H(Xi, Yi|Π, R, Z,X<i, Y<i) ≤
n∑
i=1

H(Xi, Yi|Π, R, Z)

I((X,Y ),Π|R,Z)) ≥
n∑
i=1

H(Xi, Yi|R,Z)−H(Xi, Yi|Π, R, Z) =
n∑
i=1

I((Xi, Yi),Π|R,Z)

We now want to show that I((Xi, Yi),Π|R,Z) ≥ CIC(Disj1)
Let us now consider the following two protocols

4.3.2 Protocol A

Consider both Alice and Bob to have access to w ∼ Bern(.5) and R′, and private randomness Ra, Rb.
Alice will create a random variable U, and Bob will create a random variable V according to the following
distribution:

if w = 0 then U= 0, V is random

if w = 1 then V = 0, U is random

The goal of this protocol, Π′ is to compute U ∧ V
Alice Bob

w,R′, Ra w,R′, Rb
computes U, computes V

−→
←−
.
.
.

U∧V−−−→
This protocol reveals I((U, V ),Π′|R′,W ).

4.3.3 Protocol B

Now let Z, R, be shared randomness for Alice and Bob, and again give them private randomness Ra, Rb.
Using Z Alice and Bob can compute X and Y according to the distribution µ using their shared randomness,
and consider the following protocol Π.

Alice Bob
Z,R,Ra Z,R,Rb

computes X1, . . . Xn, computes Y1, . . . , Yn
−→
←−
.
.
.

Disjn(X,Y )−−−−−−−−→
Then this protocol reveals information I((Xi, Yi),Π|R,Z)

4.3.4 Combining Protocols

We now want to show I((Xi, Yi),Π|R,Z) ≥ I((U, V ),Π′|R′,W ) = CIC(Disj1) by showing how we can
reduce protocol A to protocol B, by using protocol B to achieve the task of protocol A.
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We can let Xi = U, Yi = V and use R′ to generate Z and R, allowing Alice and Bob to generate their
remaining Xj and Yjs. Then because for all j 6= i,Xj ∧ Yj = 0 by construction, this will output Xi ∧ Yi
computing Disj1.

Therefore we have shown I((Xi, Yi),Π|R,Z) ≥ CIC(Disj1), which shows CICµ(Disjn) ≥ n×CIC1(Disj1)
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