
CS 229r Information Theory in Computer Science March 12, 2019

Lecture 13
Instructor: Madhu Sudan Scribe: Tasha Schoenstein

1 Overview

1.1 Outline

• Wrap up Ω(n) lower bound proof for DISJ

• Along the way:

– Pinsker’s Inequality

– Hellinger Distance

1.2 Reminder

• PSET 3 due Friday (standard hard deadline, but can use late days)

• Project selection due Friday (soft deadline - good for you to do it now so that you can think about it
over break)

2 Review

1. We’re trying to prove lower bounds for the communication required to solve set disjointness where
DISJn(X,Y ) = 1 when ∃iXi = Yi = 1 and is 0 otherwise.

2. In order to do this, we defined information complexity over distribution µ with error ε:

ICµε(f) = min
Πs.t.∀X,Y

PrΠ[Π(X,Y )6=f(X,Y )]≤ε

[I((X,Y ); Π|R)]

where R is the public randomness of Π.

3. We then asked: which distribution is convenient to work with? Take µ(n) on the triples (X,Y, Z) where
Z ∼ Unif({0, 1}n) and if Zi = 0, Xi = 0 and Yi ∼ Bern(1/2). If Zi = 1, Yi = 0 and Xi ∼ Bern(1/2).
Note that with this distribution, the function value of disjointness is constant and 0.

4. We defined conditional information complexity

CICnε (Π) , I((X,Y ); Π|R,Z)

where Z comes from our distribution µ. This definition essentially hardwires in the distribution that
we want to use (µ). We then want to show lower bounds on the communication costs using this notion
because:

5. We showed last time that ICnµ (Π) ≥ CICnε (Π).

6. We also showed that CICnε (Π) ≥
∑n

1 I((Xi, Yi),Π|R,Z). In other words, we showed that we were able
to get rid of conditioning on any other Xis and Yis.
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(a) This is useful because we also showed that

I((Xi, Yi),Π|R,Z) ≥ min
Π′s.t.

Π′computesDISJ

{CIC1
ε (Π′)}.

Computing disjointness is hard because we are essentially computing it coordinate by coordinate and
6a is as close as we are going to get to that.

We’ll take i = 1 WLOG to show this statement (6a) again. Using the protocol Π for communication
between Charlie and Dana, we can construct a protocol Π′ for communication between Alice and Bob
who receive the bits U and V as private inputs:

Alice ←− W,R′ −→ Bob

U, X̃2, ..., X̃n V, Ỹ2, ..., Ỹn
Xi = X̃i if Zi = 1 Yi = Ỹi if Zi = 0

Charlie ←− Z = (W,Z2, ...Zn), R −→ Dana
X1, ..., Xn, RC Y1, ..., Yn, RD

→
←

Π′,Π

The output of Π(X,Y ) is hopefullyDISJn(X,Y ) and the output of Π′(U, V ) is hopefullyDISJ(U, V ) =
U ∧ V . Notice that Charlie and Dana don’t use Z, and similarly Alice and Bob don’t use W . We
need this because we want to say that I((X,Y ); Π|R,Z) is small so that we can design a protocol
where Alice and Bob get one bit each and want to compute the AND of their bits. If we want the
mutual information and the outputs to match of the two communications, we let X1 be U , Y1 be V ,
R′ = RZ2...Zn, and Alice and Bob get private randomness X̃i and Ỹi respectively. They generate Xi

and Yi using the fact that X̃i and Ỹi are uniform and iid: if Zi = 1, then Xi = X̃i, else Xi = 0, and if
Zi = 0, then Yi = Ỹi, else Yi = 0.

Then we just have to check

(a) The distribution for Alice and Bob is drawn from µ1, and the distribution for Charlie and Dana
is drawn from µn.

(b) Π′ is correct if Π is correct: i.e. if DISJ(X,Y ) = U ∧ V.
(c) I((Xi, Yi); Π|R,Z) = I((U, V ); Π′|R′,W ). For this we need the Z2, ...Zn to be independent of Z1

(which is why the uniform distribution was useful).

This step was a central step because we took the larger problem and reduced it to an arguably simpler
one.

7. Today’s main task: we’ll show that CIC1
ε (Π) = Ω(1) > 0. We know that this ought to be non-trivial

since up to this point we’ve not used all the information we have about Π; we have essentially not yet
used the fact that we’re communicating.

3 Sketch

We want to ask: what is CIC1
ε (Π)?

To think about this, we’ll ignore the public randomness (for now), allow long transcripts and private
randomness, and assume that Π solves DISJ1 (i.e. AND) with error ≤ ε.

Note that Π is really four different distributions corresponding to each possible combination of Alice and
Bob’s bits: so Πab is the distribution of the transcript if U = a and V = b. Πab is a distribution of the sorts
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of messages Alice and Bob are sending each other. Also notice that on conditioning we only care about 3 of
the 4 distributions, since our distribution shouldn’t produce Π11.

We can also notice that I((U, V ); ΠUV |W ) = 1
2I(V ; Π0V ) + 1

2I(U ; ΠU0).
We then have a problem: what prevents Π00 =d Π01 =d Π10? Then the transcripts would not depend on

the index and there would be no hope of doing anything. In the simplified case with no private randomness,
the problem is that the transcripts resulting from the case where both have 0s are indistinguishable from
the cases where one or, more importantly, both have 1s. We know that since the last bit of the transcript is
the output and the output of Π11 should be 1, it should be distinct from the other three. In other words,
we must be able to accept Π11 with high probability and reject the other three with high probability.

We then have the following lemma:

Lemma 1. For all transcripts τ ,

Pr[Π00 = τ ] · Pr[Π11 = τ ] = Pr[Π01 = τ ] · Pr[Π10 = τ ].

Exercise 2. Prove Lemma 1.

Solution. We will prove this for an inductive base case from which it clearly generalizes. Let ΠUV (k) be the
kth bit sent.

Assume W.L.O.G. that Alice sends the first bit of the communication. Then we have that

Pr[Π10(1) = τ1] = Pr[Π11(1) = τ1] (1)

and
Pr[Π01(1) = τ1] = Pr[Π00(1) = τ1] (2)

since for the first bit sent, Alice only sends a message based on her bit.
When the second bit is sent, we want to have that

Pr[Π11(1, 2) = τ1τ2] = Pr[Π11 = τ ] =
Pr[Π01 = τ ]Pr[Π10 = τ ]

Pr[Π00 = τ ]
.

We know that
Pr[Π10(2) = τ2|Π10(1) = τ1] = Pr[Π00(2) = τ2|Π00(1) = τ1] (3)

and
Pr[Π01(2) = τ2|Π01(1) = τ1] = Pr[Π11(2) = τ2|Π11(1) = τ1] (4)

by the same logic that we know the similar statements about Alice’s bit.
Therefore we can say that :

Pr[Π11(1, 2) = τ1τ2] = Pr[Π11(1) = τ1]Pr[Π11(2) = τ2|Π11(1) = τ1] (chain rule)

= Pr[Π10(1) = τ1]Pr[Π01(2) = τ2|Π01(1) = τ1] (by (1) and (4))

= Pr[Π10(1) = τ1]
Pr[Π01(2) = τ2,Π01(1) = τ1]

Pr[Π01(1) = τ1]

= Pr[Π10(1) = τ1]
Pr[Π01(1, 2) = τ1τ2]

Pr[Π01(1) = τ1]

= Pr[Π10(1) = τ1]
Pr[Π01(1, 2) = τ1τ2]

Pr[Π00(1) = τ1]
(by (2))

= Pr[Π10(1) = τ1]
Pr[Π01(1, 2) = τ1τ2]

Pr[Π00(1) = τ1]
· Pr[Π10(2) = τ2|Π10(1) = τ1]

Pr[Π00(2) = τ2|Π00(1) = τ1]
(by (3))

=
Pr[Π01(1, 2) = τ1τ2]Pr[Π10(1, 2) = τ1τ2]

Pr[Π00(1, 2) = τ1τ2]
.

But then we’ve show what we wanted to prove for the case where there transcript has two bits of
communication. We can then easily generalize from 2 bits to n bits.
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We want to be able to say that Π00,Π01,Π10 must have something that distinguishes them, but this
lemma does not quite seem to do this.

We will then use the Hellinger distance (defined rigorously below and not to be confused with entropy)
to produce the following corollary:

Corollary 3 (Rectangle Property). H(Π00,Π11) = H(Π10,Π01).

Exercise 4. Use the lemma and the definition of Hellinger distance to prove the corollary.

Solution. We know that for all transcripts τ , Pr[Π00 = τ ] · Pr[Π11 = τ ] = Pr[Π01 = τ ] · Pr[Π10 = τ ].
Therefore, for all τ ,

√
Pr[Π00 = τ ] · Pr[Π11 = τ ] =

√
Pr[Π01 = τ ] · Pr[Π10 = τ ]. Then, we get that∑

τ

√
Pr[Π00 = τ ] · Pr[Π11 = τ ] =

∑
τ

√
Pr[Π01 = τ ] · Pr[Π10 = τ ]

so √
1−

∑
τ

√
Pr[Π00 = τ ] · Pr[Π11 = τ ] =

√
1−

∑
τ

√
Pr[Π01 = τ ] · Pr[Π10 = τ ].

But with a change of notation, this is the same as√
1−

∑
ω∈Ω

√
Π00(ω) ·Π11(ω) =

√
1−

∑
ω∈Ω

√
Π01(ω) ·Π10(ω)

but then we have that H(Π00,Π11) = H(Π10,Π01).

This statement means that under this measure of distance between distributions, one pair has the same
distance as the other pair. Along with this notion of Hellinger distance, we will also use two other notions of
distance, including the divergence. We can’t go back and forth between all three of these notions of distance
because two are bounded between 0 and 1, while the third (divergence) can be infinitely large.

We will want to use the idea that if we have an error at most ε, the distance between Π00,Π11 is
≥ 1 − 2ε = δ to imply that the Hellinger distance H(Π00,Π11) is large. Then also H(Π01,Π10) is large by
the rectangle property. But then we’ll use the fact that the Hellinger distance is a proper distance measure
to use the triangle inequality to say that H(Π01,Π00) + H(Π00 + Π10) is also large. This implies that we
should be able to tell if the first or second bit is 0 or 1; i.e. we have some mutual information, and hopefully
this mutual information (I((U, V ); ΠUV |W ) = 1

2I(V ; Π0V ) + 1
2I(U ; ΠU0)) is large.

If we have public randomness, then we will have εR and δR, and our final mutual information will have
some relationship with εR and δR.

4 Somewhat More Formally

In this section, we will provide a formal definition of Hellinger distance and discuss more formally what it
meant for distances to be “large.”

Definition 5 (Hellinger Distance). The Hellinger Distance H(P,Q) for P,Q supported on Ω is

H(P,Q) ,
1√
2

√∑
ω∈Ω

(
√
P (ω)−

√
Q(ω))2

Notice that for all P,Q, 0 ≤ H(P,Q) ≤ 1, H(P,Q) = 0 iff P = Q, and the triangle inequality holds:
H(P,Q) +H(Q,R) ≥ H(P,R). We can also notice that this distance measure is related to the L2 norm.
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We can expand the Hellinger distance to get that

H(P,Q) =
1√
2

√∑
ω∈Ω

(
√
P (ω)−

√
Q(ω))2

=
1√
2

√∑
ω∈Ω

P (ω) +
∑
ω∈Ω

Q(ω)− 2
∑
ω∈Ω

√
P (ω)Q(ω)

=

√
1−

∑
ω∈Ω

√
P (ω)Q(ω)

This means that the distance is related to the inner product of the two distributions. Specifically, H(P,Q)
is the `2-norm between the vectors (

√
P (ω)) and (

√
Q(ω)), which are vectors on the unit sphere of R|Ω|,

where Ω is the support of P and Q.
The rectangle property then follows from this definition and the lemma.
We also need the total variation distance (the most basic notion of distribution distance):

Definition 6 (Total Variation Distance). The total variation distance δ(P,Q) for P,Q supported on Ω is:

δ(P,Q) ,
1

2

∑
ω∈Ω

|P (ω)−Q(ω)| = 1

2
||P −Q||1

Notice that for all P,Q, 0 ≤ δ(P,Q) ≤ 1.

Exercise 7. Show that the Hellinger distance and total variation distance are related as follows:

H(P,Q)2 ≤ δ(P,Q) ≤
√

2H(P,Q)

Solution. If P (ω) ≥ Q(ω) ≥ 0, then |P (ω)−Q(ω)| = P (ω)−Q(ω). Then since Q(ω) ≤
√
P (ω)Q(ω), we get

that
|P (ω)−Q(ω)| = P (ω)−Q(ω) ≥ P (ω) +Q(ω)− 2

√
P (ω)Q(ω).

Equivalently, if 0 ≤ P (ω) ≤ Q(ω), then

|P (ω)−Q(ω)| = Q(ω)− P (ω) ≥ P (ω) +Q(ω)− 2
√
P (ω)Q(ω).

Therefore, for all ω, |P (ω)−Q(ω)| ≥ (
√
P (ω)−

√
Q(ω))2.

Then we get that

H(P,Q)2 =
1

2

∑
ω∈Ω

(
√
P (ω)−

√
Q(ω))2

≤ 1

2

∑
ω∈Ω

|P (ω)−Q(ω)|

≤ δ(P,Q)
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We’ll show that δ(P,Q)2 ≤ 2H(P,Q)2 to conclude that δ(P,Q) ≤
√

2H(P,Q):1

δ(P,Q)2 =
1

4

(∑
ω∈Ω

|P (ω)−Q(ω)|

)2

=
1

4

(∑
ω∈Ω

(
√
P (ω)−

√
Q(ω))(

√
P (ω) +

√
Q(ω))

)

≤ 1

4

(∑
ω∈Ω

(
√
P (ω)−

√
Q(ω))2

)(∑
ω∈Ω

(
√
P (ω) +

√
Q(ω))2

)

=
1

2
H(P,Q)2

∑
ω∈Ω

(
√
P (ω) +

√
Q(ω))2

≤ 1

2
H(P,Q)2

(
2 + 2

∑
ω∈Ω

√
P (ω)Q(ω)

)
≤ 2H(P,Q)2

This statement means that if we have a moderate total variation distance, we have a moderate Hellinger
distance. If we have a moderate Hellinger distance, we lose more switching to total variation distance.

We know that the total variation distance for the Πabs is δ(Πab,Π11) = 1
2

∑
τ |Πab(τ)−Π11(τ)| ≥ 1− 2ε

for all (a, b) ∈ {00, 01, 10}.
This implies that H(Π00,Π11) ≥ δ√

2
, so by the rectangle property also H(Π01,Π10) ≥ δ√

2
. From this

and the result from Exercise 7, we can say that δ(Π01,Π10) ≥ δ2

2 . Then the triangle inequality says that

δ(Π01,Π00) + δ(Π00,Π10) ≥ δ2

2 .
This raises the question: if two distributions are far from each other, can we say they are divergent?

Lemma 8 (Pinsker’s Inequality). If δ(P,Q) ≥ δ, then D(P ||Q) ≥ 2 log2 e(δ(P,Q))2.

We can get some intuition for Pinsker’s inequality using an example.

Example 9. Let P = Bern(1/2) and Q = Bern(1/2− δ) then we know that δ(P,Q) = δ. We also know that
D(P ||Q) = O(δ2).

We know that I(X;Y ) = D(PX,Y ||PX × PY ), so if we return to our quantity I((U ;V ); ΠUV |W ) =
1
2I(V ; Π0V ) + 1

2I(U ; ΠU0), we can recognize that:

I(V ; Π0V ) = D(
1

2
(Π00, 0) +

1

2
(Π01, 1)||1

2
(Π00 + Π01)× Bern(1/2))

and

I(U ; ΠU0) = D(
1

2
(Π00, 0) +

1

2
(Π10, 1)||1

2
(Π00 + Π10)× Bern(1/2)).

Let’s say that P0 = 1
2 (Π00, 0) + 1

2 (Π01, 1), Q0 = 1
2 (Π00 + Π01) × Bern(1/2), P1 = 1

2 (Π00, 0) + 1
2 (Π10, 1),

and Q1 = 1
2 (Π00 + Π10)× Bern(1/2).

The fact that δ(Π01,Π00) + δ(Π00,Π10) ≥ δ2

2 tells us that either δ(Π00,Π01) ≥ δ2

4 or δ(Π00,Π10) ≥ δ2

4 .

This tells us that δ(P0, Q0) ≥ δ2

8 or δ(P1, Q1) ≥ δ2

8 .

From this fact and Pinsker’s inequality, we can say that D(P0||Q0) or D(P1||Q1) ≥ Ω( δ
4

64 ) = Ω(δ4). But
this means that I(V ; Π0v) or I(U ; Πu0) ≥ Ω(δ4), so I((U, V ); ΠUV |W ) ≥ Ω(δ4).

Therefore, we have shown that δ(Π00,Π11) ≥ 1−2ε = δ implies I((U, V ); ΠUV |W ) ≥ Ω(δ4) = Ω((1−2ε)4),
which means that we can conclude that the disjointness problem requires Ω(n) communication.

1Reference used for δ(P,Q) ≤
√
2H(P,Q): http://www.tcs.tifr.res.in/~prahladh/teaching/2011-12/comm/lectures/

l12.pdf
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Exercise 10. Show that slightly more careful accounting of error terms allows us to reach this conclusion
with public randomness.

Solution. Fix some arbitrary public randomness R.
Start by assuming that Π solves DISJ1 with error ≤ εR (instead of some arbitrary error ε). Then we

let δR = 1− 2εR.
We know that the total variation distance for the Πabs is δ(Πab,Π11) = 1

2

∑
τ |Πab(τ)−Π11(τ)| ≥ 1−2εR =

δR for all (a, b) ∈ {00, 01, 10}.
This implies that H(Π00,Π11) ≥ δR√

2
, so by the rectangle property also H(Π01,Π10) ≥ δR√

2
. From this, we

can say that δ(Π01,Π10) ≥ δ2
R

2 . Then the triangle inequality says that δ(Π01,Π00) + δ(Π00,Π10) ≥ δ2
R

2 .

The fact that δ(Π01,Π00) + δ(Π00,Π10) ≥ δ2
R

2 tells us that either δ(Π00,Π01) ≥ δ2
R

4 or δ(Π00,Π10) ≥ δ2
R

4 .

This tells us that δ(P0, Q0) ≥ δ2
R

8 or δ(P1, Q1) ≥ δ2
R

8 .

From this fact and Pinsker’s inequality, we can say that D(P0||Q0) or D(P1||Q1) ≥ Ω(
δ4
R

64 ) = Ω(δ4
R). But

this means that I(V ; Π0v|R) or I(U ; Πu0|R) ≥ Ω(δ4
R), so I((U, V ); ΠUV |W,R) ≥ Ω(δ4

R).
Then if ER[εR] = ε and ER[δR] = δ, by Jensen’s inequality we can say that ER[δ4

R] ≥ (ER[δR])4 = δ4.
Also, ER[I((U, V ); ΠUV |W, r)] = I((U, V ); Π|W,R) from the definition of mutual information. Therefore
I((U, V ); ΠUV |W,R) ≥ Ω(δ4

R) means that we have in expectation I((U, V ); ΠUV |W,R) ≥ Ω(δ4).
Therefore, we have shown that δ(Π00,Π11) ≥ 1 − 2ε = δ implies I((U, V ); ΠUV |W,R) ≥ Ω(δ4), which

means that we can conclude that the disjointness problem requires Ω(n) communication.
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