
CS 229r Information Theory in Computer Science March 26, 2019

Lecture 15
Instructor: Madhu Sudan Scribes: Nari Johnson, Duncan Rheingans-Yoo

1 Overview

Today we will discuss:

• Compressing Interactive Communication

• Correlated Sampling

2 Review of protocol

We’ll begin by discussing single-shot communication, which occurs when some players Alice and Bob only
have 1 conversation. In the future, we’ll discuss amortized communication and examine what happens when
Alice and Bob can have multiple conversations.

2.1 Setup

• Alice has input X ∼ µ unknown to Bob.

• Bob has input Y ∼ µ unknown to Alice.

• Alice has private randomness RA unknown to Bob.

• Bob has private randomness RB unknown to Alice.

• Both players observe public randomness R.
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2.2 Protocol

The protocol π is the transcript of Alice and Bob’s communication. The protocol begins by Alice sending
a bit π1. Bob sends the next bit π2, and Alice and Bob continue to alternate sending bits until k total bits
have been sent.

Each bit (πi : i ∈ [k]) is a random variable. Because Alice and Bob only have access to their own inputs,
their own private randomness, public randomness R, and the transcript so far, we can rewrite each πi as a
function of these variables:

πi =

{
πi(X,R,RA, π<i) i is odd

πi(Y,R,RB , π<i) i is even

Because there are k πi bits exchanged, CC(π) = k (the communication complexity of the entire protocol
is k).

3 Information Complexity

Definition 1 (Internal Information Complexity). The internal information complexity of protocol π, denoted
ICintµ , is given by

ICintµ (π) = I(X;π|Y,R) + I(Y ;π|X,R)

ICintµ (π) is the information the protocol π conveys to Alice and Bob about each others’ inputs. In
contrast,

Definition 2 (External Information Complexity). The external information complexity of protocol π, de-
noted ICextµ , is given by

ICextµ (π) = I(XY ;π|R)

ICextµ (π) is the information the protocol π conveys to an outside observer (without prior knowledge of
X or Y ) about X and Y . Because information is symmetric, this is also equal to the information that X
and Y convey about transcript π.

We can rewrite ICintµ (π) as

ICintµ (π) =

k∑
i=1

I(πi;X|Y,R, π<i) + I(πi;Y |X,R, π<i)

Notice: ∀i, one of these two terms is always equal to 0. This is because when i is odd, πi is not a function
of Y and when i is even, πi is not a function of X.

Exercise 3. Show that ICintµ (π) ≤ ICextµ (π). Hint: Use the above sum expansion of ICintµ (π) and the
property that only one term is nonzero for each πi.

Exercise 4. Show that I(X;π,R|Y ) + I(Y ;π,R|X) = I(X;π|Y,R) + I(Y ;π|X,R).
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3.1 Protocol Simulation

Generally, if a protocol reveals very little information, or if the entropy of a protocol is small, then the
protocol itself can be compressed. What does it mean to “compress” a communication? Consider the
following modifications to the above interaction:

• We will now consider 1-way communication. Alice will send messages to Bob, but Bob will not send
messages to Alice.

• Alice will now send a compressed message to Bob. Intuitively, we will show that Bob can reconstruct
Alice’s original message (before compression!) from the compressed message.

• The output of our protocol will be this reconstructed transcript.

• Both players have access to the entire transcript, which is synonymous to observing the entire interac-
tion.

More generally, when Alice and Bob can communicate (i.e. when we no longer have the constraint of
1-way communication), we can define our protocol as follows:

Notice:

• Alice and Bob can make use of public randomness R′ and private randomness R′A, R
′
B which do not

need to be the same as R,RA, RB .

• Our compressed protocol π′ only requires l < k bits.

• OA, Alice’s output transcript, and OB , Bob’s output transcript, are random variables. They are both
functions of (X,Y,R, π′).

Definition 5 (Protocol Simulation). π′ simulates π if OA = OB = (R, π) and the distributions of x, y, π,R
are exactly preserved.
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4 BBCR

BBCR is a compression theorem published by Barak, Braverman, Chen, and Rao in 2007.

Theorem 6 (BBCR). ∀π with CC(π) = k, IC(π) = I, then ∃ π′ simulating π s.t. CC(π′) = O(
√
I · k log(k)).

BBCR says that by using simulation, we can achieve a communication complexity that’s roughly the
geometric mean of the information and communication cost. BBCR is the best known compression algorithm
for this problem.

Theorem 7 (Braverman). Using the same assumptions as BBCR,
∀π with CC(π) = k, IC(π) = I, then ∃ π′ simulating π s.t. CC(π′) = 2O(I).

Therefore you can use Braverman’s to find an expression for the communication complexity of π′ de-
pending only on the information complexity of π.

Theorem 8 (Ganor, Kol, Raz). The above are tight.

One motivation of BBCR is understanding what happens when we engage in multiple conversations
simultaneously. In this scenario,

• We have many inputs (X1, ..., Xn) and (Y1, ..., Xn) ∼ µ.

• We carry on n conversations, each with input (Xi, Yi), in parallel.

How can we compress the protocols π of these n parallel conversations? We will formalize this more next
time, but we can use BBCR to prove a lower bound of the communication complexity:

Theorem 9. CC(π⊗n) ≥ CC(π)
√
n

(The above notation π⊗n is expressed in terms of the direct product, which we will define in a future lecture.)

Theorem 10. CC(π⊗n) = nIC(π)(1 +O(1))

Theorem 10 can be rewritten as CC(π⊗n)/n ≈ IC(π), or that the amortized communication complexity (i.e.
communication complexity “per copy” of the problem, as number of copies n approaches infinity) is equal
to the information cost.

Today we will begin to prove BBCR as stated in Theorem 6. In order to do this, we’ll introduce the
notion of a protocol tree.

5 Protocols, Priors, Information Cost

Assume that π has no common randomness. We’ll define a protocol tree as follows:
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Here, at each node, the path taken (whether or not we traverse right or left down the tree) represents
the bit of transcript that the player whose turn it is sends. At each node of the tree, we need to keep track
of who “owns” that node - whether it’s Alice or Bob’s turn to communicate. Because there are k rounds
of interaction, the tree is of depth k. At the final level of the tree, note that each individual leaf represents
a distinct “path” taken through the tree. Therefore each leaf represents a distinct transcript of Alice and
Bob’s communication.

At any level of the tree, what determines if we should go right or left? The public randomness R, the
private randomness RA or RB , and the input of the player who owns that node. Therefore we’re interested
in (πi|π<i, X) and (πi|π<i, Y ). For each node U at level i in the tree, define:

• (PAU = πi|π<i, X), where PAU represents Alice’s belief (distribution) about what direction the path will
continue in.

• (PBU = πi|π<i, Y ), where PBU represents Bob’s belief (distribution) about what direction the path will
continue in.

Notice that at each step of communication, it’s not the public or private randomness, but instead private
inputs (X,Y ) that bind Alice and Bob to go one way or another. Therefore these two distributions PAU and
PBU will not be identical. The divergence between PAU and PBU is the information cost I.

First, let’s consider the setting where the information cost is very low: when I = 0. This means that at
any level of the tree, the players will learn nothing about the other player’s input based on the path that
was taken. In order for this to occur, the distributions PAU and PBU must be identical at every node.

Claim 11. I = 0 only if ∀U,PAU = PBU .

This means that at every node, the distribution of going left or going right, regardless of whether it’s
conditioned on Alice or Bob’s prior knowledge, is identical. Now we can simulate the entire path throughout
the protocol tree using 0 communication. We can do so by using shared randomness R. First sample a
real number R between 0 and 1. At each given node U , Alice and Bob’s beliefs PAU and PBU are Bernoulli
distributions with parameter p of going right at that node. If R is less than p, then go right, and if R is
greater than p, then go left. Then restrict attention to the portion of the 0-1 line that R is in (on either side
of p) and relabel the ends to be 0 and 1. Then evaluate the next node. Therefore our π′ to simulate π will
have common randomness.
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Our π′ when I = 0 is the “easy” case. Now we will examine the communication complexity when I is
very small. What is our distribution on the leaves?

6 Correlated Sampling

We will define a third distribution on each node of the tree, PU . PU will model what we will call “the right
distribution” on the probability of going right or left at that node.

Definition 12. PU = (πi|π<i, X, Y ).

For nodes owned for Alice, PU = PAU , and for nodes owned by Bob, PU = PBU .

Suppose some player has knowledge of both inputs (X,Y ) and wants to know the probability of going
right at some node U . Then the player can simulate either Alice or Bob using PU .

Consider the situation where PAU and PBU are very close to each other ∀U but not identical. In this case,
we can’t just use common randomness R as we did when I = 0.

Goal: Sample the root to leaf path of the protocol tree according to the {PU}U , or according to the
distribution PU at each node U .

One solution to this problem comes from correlated sampling. In this problem,

• Alice gets as input a distribution P .

• Bob gets as input a distribution Q.

• Alice and Bob have common randomness R.

• Alice and Bob engage in 0 communication.

• Alice produces output ωA ∼ P .

• Bob produces output ωB ∼ Q.

Example 13. P , Q are distributions on the leaves of the tree. Then when P and Q are close to each other
(formalization coming), whp ωA = ωB.

Objective: Maximize Pr[ωA = ωB ]. Or: Minimize Pr[ωA 6= ωB ].

Suppose P and Q have disjoint support. Then Pr[ωA 6= ωB ] = 1. On the other hand, as distribu-
tions P and Q become closer, then this probability increases. Consider the case when P = Q. Then
Pr[ωA 6= ωB ] = 0. We want something that interpolates nicely between these two extremes.
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Exercise 14. Use our discussion of the I = D(P ||Q) = 0 case above to solve this problem with common
randomness when P and Q have the same distribution.

Total variation distance δ(P,Q) parametrizes how far apart P and Q are in terms of where their support
is. The following exercise shows that TVD is a lower bound on how often the outputs can agree:

Exercise 15. Show that ∀P,Q,
minPr[ωA 6= ωB ] ≥ δ(P,Q)

where total variation distance δ(P,Q) is defined as

δ(P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)|

Lemma 16 (Broder, Kleinberg, Tardos, Holenstein). ∃ a protocol which achieves

Pr[ωA 6= ωB ] ≤ 2δ(P,Q)

1 + δ(P,Q)
≤ 2δ(P,Q)

Note: When δ(P,Q) = 1, we can upper-bound the probability exactly using δ(P,Q). When δ(P,Q) is
small, then our bound is much closer to 2δ(P,Q).

Note: Broder used a protocol of this form to compare files. Correlated sampling has many applications
to search engine hash functions. His solution to this problem is called the min-hash protocol.

6.1 Holenstein’s Protocol

How can we assess the similarity between two distributions P and Q?
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The x-axis of the above chart represents all of the numbers in alphabet Ω, and the y-axis represents all
of the real numbers between 0 and 1. The above lines represent the density functions of distributions P and
Q. Bob wants to produce a sample according to the purple distribution (Q), and Alice wants to produce a
sample according to the blue distribution (P ). We also want the samples to equal each other whp. Here, a
“sample” represents an x-coordinate, or a letter drawn from Ω.

We can use the following random protocol:

• Using common randomnessR, begin sampling randomly generated sequence of points {(x1, y1), (x2, y2), ...}
in the rectangular region.

• Alice and Bob will each stop when they observe the first point (xi, yi) that’s under their respective
distribution curves on the chart. Therefore we maintain that Alice and Bob output ωA, ωB according
to the distributions P and Q.

• After each point (xi, yi) is sampled, check to see if (xi, yi) is (1) under the purple curve, (2) under
the blue curve, or (3) under both the blue and purple curves. If (xi, yi) is only under the blue curve,
then output ωA = xi, but continue sampling until we get a point under the blue curve to output Bob’s
(xj , yj). Similarly, if (xi, yi) is under the purple curve, but not under the blue curve, then Bob will
output ωB = xi but Alice must keep sampling until she outputs a point under her curve. However, if
our (xi, yi) is under both curves, then Bob and Alice will both output ωA = ωB = xi.

Exercise 17. Show that Holenstein’s Protocol achieves

Pr[ωA 6= ωB ] ≤ 2δ(P,Q)

1 + δ(P,Q)

6.2 Back to our goal...

Recall that our goal is to sample the root-to-leaf path of the protocol tree according to {PU}U . If the dis-
tributions PAU and PBU are very close to each other ∀U , then there is a relatively high probability that they
will output the same leaf. If we can apply the correlated sampling solution to the distributions PA and PB

only on the leaf nodes, then we can simulate the path.

A simple example: Suppose that our protocol only involves Alice communicating, and Bob listening.
Define

PBU ∼ Bern(
1

2
)

PAU ∼ Bern(
1

2
− δ)

where PBU is Bob’s prior probability of going right at node U , PAU is Alice’s prior probability of going
right at node U , for small δ and for all nodes U .

Can we upper-bound the variation distance between leaves? To construct the distribution over the leaves,
consider that we begin at the root node and traverse down the tree. At any level of the tree, if Alice and Bob
disagree, then our distributions will produce different leaves. At any node, the probability that Alice and
Bob will disagree is O(δ). There are k levels, so there are k chances for Alice and Bob to disagree. Therefore

TV D(leafA, leafB) = O(kδ)

where TV D is the total variation distance, leafA is Alice’s distribution over the leaves, and leafB is
Bob’s distribution over the leaves. Therefore the probability that Alice and Bob don’t get the same leaf is
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O(kδ).

Assumption: kδ is tiny.

Now how do we relate this problem to information cost? We can define Vi as

Vi = I(πi;X|Y, π<i) + I(πi;Y |X,π<i)

In our case, the divergence between these two distributions is δ2, so we can simplify:

Vi = δ2

This implies that I = kδ2, as I =
∑k
i=1 Vi, where k is the communication complexity of the original

protocol.

We can rewrite O(kδ) = O(
√
k
√
kδ2). This is equal to O(

√
I
√
k). While this looks similar to the commu-

nication complexity bound that we’re trying to prove for BBCR, we aren’t quite there yet. We’ve just shown
an upper bound for the error in our zero-communication protocol as defined in the Correlated Sampling
section (below Definition 12), but this is different from the BBCR protocol, which we want to have some
exponentially small probability of error ε. In the next lecture we will use this bound to construct the correct
BBCR protocol.

7 Solutions

Solution to Exercise 14: Let R have the same distribution as P,Q. Then Alice produces output ωA = R
and Bob produces output ωB = R. Because ωA ∼ R,ωB ∼ R and R ∼ P ∼ Q, we have that ωA ∼ P, ωB ∼ Q.
We also have that ωA = ωB always.

Solution to Exercise 15: (inspired by MIT 6.8961)

By definition, ωA is drawn randomly from distribution P , and ωB is drawn randomly from distribution
Q. Consider first that

P (z) = Pr[ωA = z]

= Pr[ωA = z ∩ ωB = ωA] + Pr[ωA = z ∩ ωB 6= ωA]

≤ Pr[ωB = z] + Pr[ωA = z ∩ ωB 6= z]

≤ Q(z) + Pr[ωA = z ∩ ωB 6= ωA]

Therefore it follows that
P (z)−Q(z) ≤ Pr[ωA = z ∩ ωB 6= ωA]

Similarly, it also follows that

Q(z)− P (z) ≤ Pr[ωB = z ∩ ωA 6= ωB ]

1http://people.csail.mit.edu/costis/6896sp11/lec3s.pdf
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We’re given that

δ(P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)|

2δ(P,Q) =
∑

z∈Ω,P (z)≥Q(z)

(P (z)−Q(z)) +
∑

z∈Ω,P (z)<Q(z)

(Q(z)− P (z))

≤
∑

z∈Ω,P (z)≥Q(z)

Pr[ωA = z ∩ ωB 6= ωA] +
∑

z∈Ω,P (z)<Q(z)

Pr[ωB = z ∩ ωA 6= ωB ]

≤Pr[ωA 6= ωB ] + Pr[ωB 6= ωA]

2δ(P,Q) ≤2Pr[ωA 6= ωB ]

minPr[ωA 6= ωB ] ≥δ(P,Q)

Solution to Exercise 17:

By construction, Alice and Bob choose the same tuple, (i.e (xi, yi) = (xj , yj)) iff. the first sampled point
under one of the curves is actually under both curves. So because we are sampling uniformly, Pr[(xi, yi) 6=
(xj , yj)] is just the area under exactly one curve divided by the area under either curve. Recall the definition
of total variation distance:

δ(P,Q) =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)|

By this definition, δ(P,Q) is the area under P but not Q (and equivalently the area under Q but not P ).
Also, the total area under P must be equal to 1. Therefore the total area under either of the curves is
1 + δ(P,Q) and the area under exactly one curve is 2δ(P,Q). Therefore,

Pr[(xi, yi) 6= (xj , yj)] =
2δ(P,Q)

1 + δ(P,Q)

Because Alice outputs ωA = xi and Bob outputs ωB = xj , we know that ωA 6= ωB =⇒ (xi, yi) 6= (xj , yj)
(the converse is not necessarily true). So

Pr[ωA 6= ωB ] ≤ Pr[(xi, yi) 6= (xj , yj)] =
2δ(P,Q)

1 + δ(P,Q)

8 Ideas for Exercises

Exercise 18. Find an example of protocol π′ simulating some π where the length of the simulated transcript
π′ is less than the entropy of the transcript H(π). Morally, why is this possible? Hint: Consider the case
when I = D(P ||Q) = 0.

Solution: As established earlier, when I = 0 the length of π′ can be 0 (no communication), so any non-
trivial π will give us this result. Morally, the shared randomness R′ is doing all our “communication” for us,
so we’re not really compressing the transcript to sub-entropy levels.

Exercise 19. Consider Lemma 16 for the special case when P, Q are distributions over {0, 1}. Come up
with a protocol that is as simple as possible, in that it only requires sampling one real number from the public
randomness R.
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Solution: Suppose P ∼ Bern(p), Q ∼ Bern(q). Sample R ∼ Unif([0, 1]). Have Alice output 1 if R < p
and 0 otherwise, and Bob output 1 if R < q and 0 otherwise. Certainly, Alice’s output ωA ∼ P and
Bob’s output ωB ∼ Q. Also, Pr[ωA 6= ωB ] = |p − q| = δ(P,Q). Because p, q ∈ [0, 1], |p − q| ≤ 1, so

δ(P,Q) ≤ δ(P,Q) 2
1+δ(P,Q) , so Pr[ωA 6= ωB ] ≤ 2δ(P,Q)

1+δ(P,Q) .
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