
CS 229r Information Theory in Computer Science March 28, 2019

Lecture 16
Instructor: Madhu Sudan Scribe: Kevin Rao

1 Today’s Agenda

1.1 Topics

• Conclude: Compressed Interactions

• Start: Information-Amortized Communication

1.2 Logistics

Project presentations likely May 1

2 Review

Theorem 1. If some protocol π has CC(π) ≤ k and IC(π) ≤ I then it can be simulated by another protocol
π′ with CC(π′) ≤ O(

√
kI)

2.1 Correlated Sampling

Alice has as input a distribution P and Bob has a distribution Q both supported on Ω and some shared
randomness R. Without any communication, they output ωA ∼ P and ωB ∼ Q and we wish to minimize
Pr[ωA 6= ωB ]

Exercise 2. Suppose Alice and Bob both receive (P,Q), but still must output according to P and Q respec-
tively. Show that min Pr[ωA 6= ωB ] = δ(P,Q).

Last time we showed that we can achieve Pr[ωA 6= ωB ] ≤ 2δ(P,Q) and that this bound is tight up to a
factor of 2, as Alice only knows P and Bob only knows Q. If Alice and Bob do not both know P,Q, the
factor of 2 matters.

3 Simulating a Protocol

Today we wish to come up with a way to simulate a general interaction. We look at the protocol tree,
where for each step of the interaction Alice and Bob follow some instructions to go left and right with some
probability on the nodes they control.

Goal: Alice and Bob both output a leaf that looks like it was produced with all correct steps
The following three distributions matter:

• If node u is at level i, Pu = πi|π<i, x, y. This quantity is only known to one player at any given node
(whichever player “owns” that node)

• PAu = πi|π<i, x

• PBu = πi|π<i, y

We have the following two tensions:
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• PAu and PBu are very close for all u. This is good news for us, because we don’t need to communicate
very much and still probably output correctly.

• PAu and PBu are far apart. This means each action you take (left or right) leaks information about the
inputs and path, so IC(π) is high.

This is our general understanding: either distributions are close or far at certain nodes.

3.1 BBCR Simulation Protocol

The simulating protocol π′ put forth by [BBCR] is as follows:

1. π′ starts at the root, and we want to sample a leaf according to distribution Pu (we make all decisions
simultaneously). To do this, on all nodes Alice and Bob both choose a left or right (even if they don’t
own the node) according to PAu and PBu with correlated sampling. If the two disagree on a move with
high probability, it is because the distributions are far.

Note: we are making 2k correlated choices for a depth k graph. This is extremely inefficient, but we
haven’t communicated yet, and that is what we ware trying to minimize so it’s fine.

2. • Pick the path from root to leaf for Alice `A

• Pick the path from root to leaf for Bob `B .

If Alice and Bob have the same node, they’re in business. If the nodes are different, we must backtrack
and binary search for where Alice and Bob began to disagree.

Thus, the next step is

3. Alice and Bob say, “This is where I think we should end”, and each encode their leaf with some k bit
representation. They now run an equality testing protocol on their leaves.

4. Binary search for the last node that they share (least common ancestor) by looking first at level k2 and
so on. With some work, we see that this requires O(log k) communication, as we have k choices for
where we diverge and binary search takes log k communication.

5. Call the last common ancestor u1. Now we recursively compute the new root π′(u1).

Exercise 3. Show that the least common ancestor computation will indeed require log k bits of communica-
tion.

Having done this, we claim that we have correctly picked a path. Hopefully, each step of the process
takes us fairly far down the tree. If so, the protocol is good. Otherwise, we can simply say there is high
information cost.

3.1.1 Analysis

We claim that the number of iterations (times we start from a root and do correlated sampling) is at most√
kI. We can assume that we make at least one step at each iteration, since if Alice and Bob disagree they

defer to the person who actually “owns” that step.

Proof. We define disagreements to be nodes on the relevant path where Alice and Bob pick different di-
rections. Say Zi is some indicator r.v. which is 1 if in our process we saw a disagreement at level i. The

expected number of iterations is E

[
k∑
i=0

Zi

]
Note: if I tell you some u is on the path, then Pr[disagreement at u|passing through u] ≤ 2δ(PAu , P

B
u )

(this follows from the correlated sampling procedure).
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Thus, E

[
k∑
i=0

Zi

]
≤ 2

∑
i Eu

[
δ(PAu , P

B
u )
]
, where u is the chosen node at level i.

How does this relate to information cost?
Recall that IC(π) = I(π;x|y)+I(π; y|x) =

∑
i I(πi;x|y, π<i)+I(πi; y|x, π<i). Define vi , I(πi;x|y, π<i)+

I(πi; y|x, π<i). We compare vi to Eu[δ(P qu , P
B
u )] and see that vi roughly measures expected divergence over

u, so we are left with Eu[D(PAu ||PBu )] vs E[δ(PAu , P
B
u )]. We want to show that the latter is an upper boud

of the former.

Theorem 4 (Pinsker’s Inequality). δ(pAu , P
B
u ) ≤

√
D(PAu ||pBu )

Exercise 5. Use Pinsker’s Inequality to prove that E[Zi] ≤
√
vi. Furthermore, show that E[

∑
Zi] ≤√

k
∑
vi =

√
kI

This concludes the proof of number of iterations less than
√
kI and thus since each iteration is log k

proves the BBCR theorem

4 Amortized Communication / Direct Product Problems

Suppose we have the function f : X ,Y → R and wish to compute f⊗n : Xn,Yn → Rn, where
f⊗n(x1, x2, . . . xn, y1, y2, . . . yn) = (f(x1, y1), f(x2, y2), . . . f(xn, yn)). How does CC(f⊗n) compare with

CC(f)? We can just take the protocol for f and execute it n times, to get CC(f⊗n) ≤ CC(f)n.
Long time open problem: Is it true that CC(f⊗n) ≥ Ω(CC(f)n), up to constant factors?
[BBCR] show that CCnε (f) ≥ Ω(CCε(f)

√
n)

Theorem 6 (BR). ICε(f
⊗n) = ICε(f)n.

Suppose we have some protocol π for f⊗n with CC(π) = C. This implies CC(π) = C and IC(π) ≤ C
⇒ f has protocol with IC ≤ C

n , and compressing gives a protocol for f with CC = O( C√
n

).

This theorem is interesting: if we have a problem, solving its n-fold takes a scaled by n amount of
communicating.

4.1 Let’s talk about errors!

Definition 7. We say some protocol πn solves f⊗n with error ε if ∀i we have Pr[(πn)i 6= (f⊗n)i] ≤ ε

Definition 8. CCnε (f) = minπ{CC(π)} s.t. π solves f⊗n with error ε

Definition 9. ICnε (f) = minπ{IC(π)} s.t. π solves f⊗n with error ε

CCnε (f) is bounded strictly above by CCε(f
⊗n).

5 Next Time

[BR]: CCnε (f) = (1 + o(1))ICnε (f)
For the interactive correlated sampling problem, CC(ICS) = D(P ||Q) +O(

√
D(P ||Q) + log 1

ε ) for input
distribution P to Alice and Q to Bob.

[GKR]: ∃fk s.t. IC(fk) ≤ k and CC(fk) ≥ 2k.
This establishes that the answer to CC(f⊗n) ≥ Ω(CC(f)n) is NO.
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