
CS 229r Information Theory in Computer Science Apr 4, 2019

Lecture 18
Instructor: Madhu Sudan Scribe: David Xiang

1 Outline

1. Introduce 2-Prover games

2. Define and state Raz’s Parallel Repetition Theorem

3. Introduce key lemma

The main references for this material will be Raz[1] and Holenstein[2].

2 2-Prover Games

2.1 Definitions

The setting of a 2-Prover game consists of a verifier and two provers A and B, referred to as Alice and
Bob respectively. Alice and Bob should be thought of as having some claim based off of insider knowl-
edge that the verifier is attempting to verify, which is modeled as the verifier generating questions (x, y)
according to some distribution µ. The verifier will then separately send question x to Alice and question y to
Bob, who return answers a and b respectively. The verifier then decides whether to accept or reject the claim.

Definition 1. A 2-prover game G consists of sets X ,Y (the set of possible questions), A,B (the set of
possible responses, and a pair (µ, V), where µ is a distribution supported on X × Y, and V is a function

X × Y ×A× B → {0, 1}

V here represents the decision of the verifier to accept/reject the claim, which depends on the questions
asked and the answers received.

Definition 2. A strategy is a pair of deterministic functions f : X → A, g : Y → B.

Definition 3. The value of a game under a strategy Val(G, f, g) is

E(x,y)∼µ[V (x, y, f(x), g(y)]

i.e. the probability that the verifier confirms Alice and Bob. The value of G, ω(G), is then

ω(G) = max
f,g
{Val(G, f, g)}

CS 229r Information Theory in Computer Science-1

V erifier

(x, y) ∼ µ

Alice Bob

x y

f(x) = a g(y) = b

2.2 Odd Cycle

Our first example of a game will consist of graph coloring. The general setting consists of a large public
graph G, which Alice and Bob claim is c-colorable. The verifier would like to verify this fact, but is unwilling
to actually attempt to find a c-coloring for G (for example, G could be very large) and so will instead ask
Alice and Bob a question to convince itself that the graph is c-colorable.

For simplicity we’ll consider the case where G is an odd cycle and c = 2. To be exact, we’ll take G to be
the graph with vertex set indexed by elements of Zn, n odd, and with edges between vertices i to i + 1 for
all i ∈ Zn. Such a graph is clearly not 2-colorable, and so ideally the verifier will be able to identify whether
Alice and Bob are lying.

A first try at a verification setup may be to randomly choose i, and then ask Alice and Bob for the colors
of the vertices i and i + 1 in a 2-coloring of the graph G. The problem here is that Alice can return 0 and
Bob can return 1 (irrespective of the query), and the verifier will not be able to detect any lie from this. A
slightly better strategy will be as follows:

1. Uniformly pick i in Zn, and then generate the pair (x, y) = (i, i) with probability 1
2 and (x, y) = (i, i+1)

otherwise.

2. Ask Alice for the color of vertex x and Bob for the color y

3. Alice and Bob return colors χA and χB respectively. We accept (V (x, y, χA, χB) = 1) if their answer
is consistent with a 2-coloring of the graph, and reject (V (x, y, χA, χB) = 0) otherwise.

Suppose Alice and Bob agree to return x (mod 2) and y (mod 2) respectively. We will only ever detect a
problem if x = n− 1, y = n, and so under this strategy Alice and Bob succeed with probability 1− 1

2n .

Exercise 4. Show this strategy is optimal, in the sense that the value of this game is 1− 1
2n .

Proof. The only way for Alice and Bob to do better than a value of 1 − 1
2n is to win with probability 1.

Assume Alice and Bob have strategies which do so- in this case, since we generate pairs (x, y) = (i, i) with
nonzero probability for all i, it follows that f(i) = g(i) for all i. But now if Alice and Bob are to win
with probability 1, they also need f(i)! = f(i + 1) for all i (with indices taken modn), which implies that
f(i) = f(i+ 2k) for all integer k, but taking k = n+1

2 shows that f(i) = f(i+ 1), a contradiction.

3 Repetition of games

3.1 Parallel and Sequential Repetition

It’s a pretty natural question to ask what the value of a game is. However, as the previous example alludes
to, difficult problems such as 3-coloring can be encoded into a game, and so asking for the value of a game is

CS 229r Information Theory in Computer Science-2

as least as hard as asking questions such as graph colorability, as we can construct games which have value
1 iff a graph is c-colorable. In fact, we have the even stronger result

Theorem 5. There exists an infinite family of games whose value is hard (NP-complete) to approximate to
within ±10−10.

Does this imply that games whose values are hard to approximate additively to within 1−ε, for arbitrary
ε? There’s in general a canonical procedure to go from these sorts of weak approximation results to strong
results through amplification- run the game many times in parallel, to get a game with much lesser value.
This sort of thinking motivates the parallel repetition theorem. It’s important to first define what we mean
by repetition, however.

1. We can repeat the game multiple times, so that each game is independent of each other. This is
sequential repetition, and a game repeated k times in this fashion will be denoted Gk.

2. We can generate k questions and give them to Alice and Bob at once (think of this as a long multi-part
question). This is called parallel repetition, and is the more mathematically interesting of the two,
since Alice’s (resp. Bob’s) answer to a particular question can now depend on their answers to previous
questions. Under our definitions this is still a 2-prover game, unlike in the case of sequential repetition.
A game repeated k times in this fashion will be denoted G⊗k.

Exercise 6. Show that ω(Gk) = ω(G)k.

Proof. Since each query is independently satisfied with probability at most ω(G), the probability all queries
are satisfied is ω(G)k.

Exercise 6 is confirmation of the claim that parallel repetition is the more interesting of the two types of
repetition. Let’s be formal about the definitions now:

Definition 7. Given a game G = (µ, V), we define the k-fold parallel repetition of G to be G⊗k = (µ⊗k, V ⊗k),
where µ⊗k is the k-fold product distribution and V ⊗k is the map

V ⊗k((x1, . . . xk), (y1, . . . yk), (a1, . . . ak), (b1, . . . bk)) =

k∧
i=1

V (xi, yiai, bi).

The important aspects here are that the strategies f, g are now functions from X k → Ak,Yk → Bk
respectively. There is no such assumption that f(x1, . . . xk) = (f(x1), f(x2), . . . f(xk)), which is essentially
what is going on in the case of sequential repetition.

We can ask again whether
ω(G⊗k) = ω(G)k,

the bound ω(G⊗k) ≥ ω(G)k follows from just treating parallel repetition as sequential repetition.

3.2 Feige’s Counterexample

In fact, for all k there exists G with ω(G⊗k) = ω(G) < 1, and so the previous claim cannot hold. We’ll show
this in the case k = 2, this counterexample is due to Feige. Define a game G as follows:

1. The verifier tosses two fair coins x ∈ {1, 2}, y ∈ {3, 4}. (i.e. x takes the values in {1, 2} with equal
probability, likewise for y) The verifier sends x to Alice and y to Bob

2. Alice and Bob try to guess the value of one of the coins they receieved; that is, Alice and Bob both
try to guess the value of either x or y.

3. The verifier accepts if both guesses are equal and correct. In our notation, we accept if a = b and
b ∈ {x, y}

CS 229r Information Theory in Computer Science-3

Alice can easily guess the value of x, and Bob can easily guess the value of y. But they need to guess the
value of the same coin- and it’s clear from this that intuitively the value of the game is 1

2 , since WLOG Alice
has to guess Bob’s coin (it’s not too hard to enumerate over all possible functions to see that the value of
the game is 1

2).
As an aside we should note that even the fact that ω(G⊗2) ≥ ω(G) is very subtle - for example, if we change
the setting to X = Y, so that V : X × X ×A×A → {0, 1}, with V al(G) = maxf val(G, f), it’s possible to
have ω(G⊗k) > ω(G). (This setting is known as the “PCP version” of the game. See page 18 of [3] for a
more detailed example)

In the parallel version of the game, Alice and Bob can now leverage the fact that Alice and Bob know
the values of x and y. Let’s denote the values of the coin flips by x1, x2, y1, y2. The idea is to hope that the
event E : x1 = y2 − 2 happens. This happens with probability 1

2 . In this case, Alice and Bob can try to
guess the values of x1 and y2: Alice will guess (x1, x1 + 2), and Bob will guess (y2 − 2, y2). By construction
Alice and Bob win iff E occurs, and so the value of this game is 1

2 , demonstrating that

ω(G⊗2) = ω(G) =
1

2

in this case.

4 Parallel Repetition Theorem

4.1 Main Theorem

We just saw that it can be the case that ω(G⊗k) = ω(G)- which is not very useful for our original motivation
of being able to apply amplification to these types of problems. Thankfully, this is not the case in general.

Theorem 8 (Verbitsky). For every game G with ω(G) < 1 and for all ε > 0 there exists k such that
ω(G⊗k) < ε.

This shows the intuitive claim that parallel repetition should eventually make games harder. The problem
here is that k is a function of both ε and G, and so isn’t very useful for our purposes. Raz’s parallel repetition
theorem is able to remove the dependence on G.

Theorem 9 (Raz[1]). For all answer sets A,B and ε > 0, there exists δ > 0 such that for all G, k then

ω(G) < 1− ε⇒ ω(G⊗k) = (1− δ)k

The important part here is that δ is a function only of the size of A,B (which are usually constant) and
ε. We will work towards the proof of this result in the next few lectures.

4.2 A useful lemma

For fixed f , g and S ⊂ [k], let wS be the event that the provers win on all coordinates i ∈ S. If P[wi|w1,...i−1] ≤
w(G) we’d be able to conclude that ω(G⊗k) ≤ ω(G)k, except we know from Feige’s example that this does
not hold: in that case P (w2|w1) = 1. What we can say is

Lemma 10. For all A,B, ε > 0, there exists γ > 0 such that for all G, f, g, k with ω(G) ≤ 1−ε, the following
holds: For any subset S of [k] with size |S| < γk, there exists i /∈ S so that either

P[wi|wS] ≤ 1− ε

2

or
P[wS] ≤ 2−γk.

CS 229r Information Theory in Computer Science-4

Why is this useful? We can start with

S0 = ∅ ⇒ wS0
= 1

Then, we can find i1 /∈ S0 with P(wi1) ≤ 1− ε
2 , and we can continue inductively to build our sets Si. At any

step P (wSj
) ≤ (1− ε/2)j .

We only stop when wS ≤ 2−γk, but this bounds P [w[k]] ≤ P [wS] ≤ 2−γk, which is exponentially small in k.

Or, we never stopped, and so instead we have the bound P (w[k]) ≤ (1− ε/2)γk, the important conclusion is
that both bounds are exponentially small in k.
How would we go to prove a lemma like this? The strategy will be to use a simulation argument- sneak in
the ith coordinate into a k-fold parallel repetition game, and calculate the probability of winning from there.

References

[1] Raz, R. (1998). A Parallel Repetition Theorem. SIAM Journal on Computing, 27(3), 763-803.

[2] Holenstein, T. (2007). Parallel repetition: Simplifications and the no-signaling case. Proceedings of the
Thirty-ninth Annual ACM Symposium on Theory of Computing, 411-419.

[3] Radhakrishnan, J. and Sudan, M. (2006). On Dinur’s proof of the PCP Theorem. Bulletin (New Se-
ries) of the American Mathematical Society, Volume 44, Number 1, January 2007, Pages 19–61 S 0273-
0979(06)01143-8

CS 229r Information Theory in Computer Science-5

	Outline
	2-Prover Games
	Definitions
	Odd Cycle

	Repetition of games
	Parallel and Sequential Repetition
	Feige's Counterexample

	Parallel Repetition Theorem
	Main Theorem
	A useful lemma

