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Lecture 19
Instructor: Madhu Sudan Scribe: Shyam Narayanan

1 Outline

1. Brief review of 2-Prover games, Parallel Repetition Theorem, and key lemma

2. Outline of Parallel Repetition Theorem

We will not prove the Parallel Repetition Theorem, but will instead outline some of the main ideas and
main challenges in proving this theorem. There are a lot of subtleties in the proof, so we won’t have time
to do the entire proof. To see full proofs of the Parallel Repetition Theorem, we point the reader to Raz [3]
(the original proof), Holenstein [2] (a simplified proof), and notes by Barak [1].

2 Brief Review and commentary

Here, we review the previous lecture, as well as provide some commentary on the main lemma we will be
focusing on for this lecture.

2.1 Two-Prover Games

Recall that a two-prover game G = (X,Y,A,B, µ, V ) works as follows. We have a verifier, and two provers
Alice and Bob. The verifier chooses (x, y) ∈ X × Y according to distribution µ on X × Y, and sends Alice
x and Bob y. Alice has some strategy f : X → A and Bob has some strategy g : Y → B, so if Alice sees
x she sends back a = f(x) and if Bob sees y he sends back b = g(y). The verifier has a verifying function
V : X × Y × A × B → {0, 1} with 1 being accept and 0 being reject. Importantly, Alice and Bob do not
get to see the other person’s input (so Alice doesn’t see Y and Bob doesn’t see X).

The value of the gameG for some fixed strategies f, g is defined as V alf,g(G) = E(X,Y )∼µV (X,Y, f(X), g(Y )).
Finally, the value of the game G, ω(G) is defined as maxf,g{V alf,g(G)}.

2.2 Parallel Repetition of Games

For a gameG = (X,Y,A,B, µ, V ), we define the k-fold repetition of the game asG⊗k := (Xk, Y k, Ak, Bk, µk, V k).
Here, Xk, Y k, Ak, Bk are just the k-fold product alphabets, µk is the product distribution on (X × Y )k =
Xk × Y k, and

V k(x, y, a, b) =

k∧
i=1

V (xi, yi, ai, bi),

where x = x1x2 · · ·xk and similarly for y, a, b. Note that our functions f : Xk → Ak and g : Y k → Bk no
longer have to be entrywise functions, so f(x)i can depend on xj for j 6= i.

2.3 Raz’s Parallel Repetition Theorem

We saw in the last class that ω(G⊗k) ≥ ω(G)k, but that equality didn’t necessarily hold, by looking at Feige’s
counterexample, which gaves us a game G such that ω(G⊗2) = 1

2 = ω(G). However, we have the following
theorem, proven by Raz.
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Theorem 1. [3] For all alphabets A,B and all ε > 0, there exists δ > 0 such that for any game G with
ω(G) ≤ 1− ε, then ω(G⊗k) ≤ (1− δ)k.

To prove this, we will need to introduce a key lemma that we introduced last time, and we focus the
remainder of the lecture on this lemma. Fix strategies f, g, and for any set S ⊂ [k], let wS be the event that
∧i∈SV (xi, yi, f(x)i, g(y)i) = 1, i.e. V (xi, yi, f(x)i, f(y)i) = 1 for all i ∈ S. We have the following lemma:

Lemma 2. For fixed strategies f and g, there exists some γ only depending on ε,A,B such that for all
|S| ≤ γ · k, P[wS ] ≤ 2−γk or ∃i 6∈ S such that P[wi|wS ] ≤ 1− ε

100 .

Exercise 3. Show how Lemma 2 implies Theorem 1.

Proof. If suffices to show for any fixed strategies f, g, that there is some uniform δ such that P[w[1:k]] ≤
(1 − δ)k. We know that by definition of wS , wS is implied by wT for all S ⊂ T. Therefore, if we ever have
some |S| ≤ γ · k such that P[wS ] ≤ 2−γk, then we can set δ = 1− 2−γ , which is greater than 0 and does not
depend on f, g. Therefore, we assume for all |S| ≥ γ ·k, there exists some i 6∈ S such that P[wi|wS ] ≤ 1− ε

100 ,
so P[wS∪{i}] ≤ P[wS ] ·

(
1− ε

100

)
. Therefore, there exists some chain i1, i2, · · · , iγ·k of distinct elements such

that if Sj := {i1, · · · , ij}, P[wSj+1 ] ≤ P[wSj ] ·
(
1− ε

100

)
, which means P[w[1:k]] ≤ P[wSγ·k ] ≤

(
1− ε

100

)γ·k
.

Therefore, we can set δ = 1−
(
1− ε

100

)γ
, which is again greater than 0 and does not depend on f, g.

2.4 Commentary

We note some commentary for why we may need a lemma like Lemma 2.
First, why do we need to stop the lemma at |S| ≤ γ · k? Recall Feige’s counterexample from last lecture.

Define X = {1, 2}, Y = {3, 4}, A = B = {1, 2, 3, 4}, µ = Unif(X × Y ), and V (x, y, a, b) = 1 if a = b and
b ∈ {x, y}. Then, ω(G) = ω(G⊗2) = 1

2 , and since the value of the product of two games is at least the

product of the values, ω(G⊗k) ≥ 2−bk/2c. If we have a 20-fold product of the game, we can pair up the games
i and 10 + i for 1 ≤ i ≤ 10 so that if the verifier accepts on the first 10 coordinates, that can guarantee
winning on the next 10 coordinates.

Second, why do we need to have it be for all |S| ≤ γ · k and ∃i 6∈ S? Why can’t we just induct on
S = {1, 2, . . . , r}, i.e. show that if r ≤ γ · k, either P[w[r]] ≤ 2−γk or P[wr+1|w[r]] ≤ 1 − ε

100? This is true
by a very similar reason as before? We can choose any pairing of the coordinates (such as pairing 1 with
2, 3 with 4, and so on) so that if we know the verifier accepts coordinate 1, it must accept coordinate 2.
Therefore, we can only guarantee that at each step, there is some additional index that we can add to get
P[wS∪{i}] ≤

(
1− ε

100

)
· P[wS ].

3 Proof Outline of the Main Lemma

3.1 Outline of Strategy

The idea for proving the main lemma is a reduction. Namely, suppose we have a contradiction to the lemma,
i.e. |S| ≤ γk but P[wS ] ≤ 2−γk and for all i 6∈ S,P[wi|wS ] ≤ 1 − ε

100 . Then, it suffices to reduce this
to finding a strategy for the original game G with value more than 1 − ε. Let’s say for simplicity that
S = {1, 2, . . . , r − 1} and i = r for now.

The general goal is as follows. If Alice is just given xr and Bob is just given yr with (xr, yr) ∼ µ, then
we want Alice to inject xr into X1, . . . , Xr = xr, . . . , Xk and Bob to inject yr into Y1, . . . , Yr = yr, . . . , Yk.
We want Alice to sample the other coordinates Xi and Bob to sample the other coordinates Yi so that the
distribution of (X1, Y1), . . . , (Xn, Yn) looks like the total distribution conditioned on the verifier accepting
the first r − 1 coordinates. Then, we get a way to get a probability of success of a single iteration of the
game to be close to P[wr|w[r−1]] since Alice can just output the rth bit of f(X1, . . . , xr, . . . , Xk) and Bob
can just output the rth bit of g(Y1, . . . , yr, . . . , Yk). We will end up being forced not to condition on the first
r − 1 questions but rather the first r − 1 answers.
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The general strategy is as follows. We will use shared randomness to completely determine X<r, Y<r.
(Eventually, we will need to remove the common randomness, but we can just choose an instance of the
common randomness that maximizes probability of success.) Remember that r is quite small compared to
k, since r ≤ γ · k. Letting Xk := X1 · · ·Xk and Y k := Y1 · · ·Yk, we ideally want to sample Xk, Y k such
that V (Xj , Yj , f(Xk)j , g(Y k)j) = 1 for j = 1, . . . , r − 1. Assuming we can do this perfectly, we will have
P(V (Xr, Yr, f(Xk)r, g(Y k)r) = 1) ≥ 1 − ε

100 . Therefore, we can even have V (Xj , Yj , f(Xk)j , g(Y k)j) = 1
with probability more than 1− 99ε

100 and we will get a strategy for the original game with success probability
above 1− ε.

But we note that f(Xk)<r, g(Xk)<r also depends on X>r, Y>r. So we need to sample them as well!
Unfortunately, there are too many coordinates: we have about k − r ≈ k coordinates since r ≤ γk, which
is much smaller than k. However, we don’t need to have the verifier accept in the “> r” coordinates (i.e.
V (Xj , Yj , f(X)j , f(Y )j) can be anything for j > r), so all we will need is for X>r, Y>r to roughly be from
the correct distribution. We will use some stuff we saw from amortized communication results. Let T>r be
the common randomness: Tj will either equal (0, xj) with probability 1/2 or (1, yj) with probability 1/2.
Thus, for each coordinate, Alice and Bob either get just a sample of xj or a sample of yj for each j > r, so
Xj = xj if Tj = (0, xj) and Yj = yj if Tj = (1, yj). If this strategy “wins” in the first r − 1 coordinates (i.e.
the verifier accepts), then we are happy: otherwise, repeat the algorithm.

Note, however, that Alice doesn’t know what Y>r is and Bob doesn’t know what X>r is. What we will
have to do is fix the answers for the first r − 1 coordinates: Alice will assume her answers are a1, · · · , ar−1

and Bob will assume his answers are b1, · · · , br−1. We give an outline of the methods Alice and Bob will
follow:

1. We first pick “typical” x1, . . . , xr−1, y1, . . . , yr−1, a1, . . . , ar−1, b1, . . . , br−1 and fix these (we can do so
with common randomness). By typical, we mean that most coordinates j ≥ r will satisfy Wj with
probability at least 1 − ε

50 , conditioned on Xi = xi, Yi = yi, f(X)i = ai, and f(Y )i = bi for all i < r,

and that P(Xi = xi, Yi = yi, f(X)i = ai, f(Y )i = bi ∀i < r) is about 2−Θ(r). Indeed, we can pick
such a typical set because we are assuming P[wi|wS ] ≥ 1 − ε

100 for all i 6∈ S = {1, · · · , r − 1} and
P[wS ] ≥ 2−r. Let W be the event that the first r − 1 questions equal X<r for Alice, the first r − 1
questions equal Yr−1 for Bob, the first r − 1 answers are a<r from Alice, and b<r from Bob, over the
probability distribution µk of questions asked by the verifier. Then, we will have for most values i 6∈ S,

(Xi, Yi)|W ≈ (U, V ),

i.e. the distribution of (Xi, Yi) will be close in Total Variation Distance from the correct distribution
(U, V ). We will state this claim more rigorously and prove this in the next subsection.

2. Alice will set X1, . . . , Xr−1 as above, and Bob will set Y1, . . . Yr−1 as above. Also, Alice and Bob will
set Xi = U and Yi = V if the verifier sends U to X and V to Y , for some randomly chosen i between
r and k (which can be done with public randomness). We claim without proof that for most values of
i ≥ r,

Tj≥r,j 6=i|W,Xi,Yi ≈ Tj≥r,j 6=i|W,Xi ≈ Tj≥r,j 6=i|W,Yi .
By Tj≥r,j 6=i, we are looking at the Tj ’s for j ≥ r and j 6= i, since we want to exclude the Tj ’s for j ∈ S,
as well as j = i as we are conditioning on Xi, Yi.

3. Alice will sample Tj≥r,j 6=i|W,Xr and Bob will sample Tj≥r,j 6=i|W,Yr , though Alice and Bob will use a
correlated sampling method.

4. Alice and Bob will complete this to get Xj≥r,j 6=i|W and Yj≥r,j 6=i|W. For Tj = (0, xj), Alice will set
Xj = xj and Bob will sample Yj conditioned on Xj = xj and the first r−1 coordinates of g(Y1, · · · , Yn)
being b1, · · · , br−1. We do an analogous procedure for Tj = (1, yj). Finally, we will resample if necessary.

If you do this carefully, winning at the rth coordinate will occur with probability about

P(Winning at rth coordinate|Winning at coordinates 1, . . . , r − 1),
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which gives us a reduction from P[wi|wS ] being large for all i 6= S to a high-success strategy for the original
game G = G⊗1.

3.2 Proof of a Proximity Result

Finally, we ask how to prove proximity lemmas like (Xr, Yr)|W ≈ (U, V ) ∼ µ. To do this, we will need to
show that for a random i chosen between r and k, (Xi, Yi) conditioned on the verifier accepting the first
r − 1 coordinates does not differ too much from a randomly chosen (U, V ). The event W should occur with
at least 2−Θ(γk) probability, so a result like Lemma 6 applied to (Xr, Yr), . . . , (Xk, Yn) will be useful.

Proving things like this is where the information theory we have developed will come in!

Proposition 4. If X is some random variable and E is some event that happens with probability at least
2−d, then the KL Divergence between X|E and X satisfies D((X|E)||X) ≤ d.

Exercise 5. Prove Proposition 4.

Proof. Suppose that X has image Ω = [n] and P(X = i) = pi,P(X = i|E) = qi. Since P(E) ≤ 2−d, we have

pi = P(X = i) ≥ P(X = i, E) = P(E)P(X = i|E) ≥ 2−d · qi.

Therefore, qi ≤ 2d · pi, so qi
pi
≤ 2d. So by the definition of KL divergence, we have

D((X|E)||X) =

n∑
i=1

qi log2

qi
pi
≤

n∑
i=1

qi · d ≤ d,

since
∑
qi = 1.

From this, we have the following Lemma:

Lemma 6. If (X1, Y1), . . . , (Xn, Yn) are independent events with distributions on X × Y , and if E is an

event that occurs with at least 2−d probability, then we have Ei[δ((Xi, Yi)|E, (Xi, Yi))] = O
(√

d/n
)
, where

i is uniformly chosen from [n] and δ represents total variation distance.

Proof. Note that by replacing X with (Xn, Y n) = (X1, . . . , Xn, Y1, . . . , Yn) in Proposition 4, we have

D((X1, . . . , Xn, Y1, . . . , Yn|E)||(X1, . . . , Xn, Y1, . . . , Yn)) ≤ d.

This equals

−H(X1, . . . , Xn, Y1, .., Yn|E) + EX1,...,Xn,Y1,...,Yn|E logP(X1 = x1, . . . , Yn = yn)

≥ −
n∑
i=1

H(Xi, Yi|E) +

n∑
i=1

EX1,...,Xn,Y1,...,Yn|E logP(Xi = xi, Yi = yi)

=

n∑
i=1

(
−H(Xi, Yi|E) + EXi,Yi|E logP(Xi, Yi)

)
=

n∑
i=1

D((Xi, Yi|E)||(Xi, Yi)),

using the fact that (Xi, Yi)’s are independent events. Thus, we have by Pinsker’s inequality,

n∑
i=1

δ((Xi, Yi|E), (Xi, Yi))
2 ≤

n∑
i=1

D((Xi, Yi|E), (Xi, Yi)) ≤ d,

so we have that
n∑
i=1

δ((Xi, Yi|E), (Xi, Yi)) ≤
√
d · n,

which can be seen by either the Cauchy-Schwarz inequality or Jensen’s inequality. The lemma follows by
dividing both sides by n.
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