General Strong Polarization

Madhu Sudan

Harvard University

Based on joint works with Jaroslaw Blasiok (Harvard), Venkatesan Guruswami (CMU), Preetum Nakkiran (Harvard) and Atri Rudra (Buffalo)

Addendum: (After Alex's talk yesterday)

- Another talk on Polar Codes.
- Emphasis
 - BSC "errors"
 - Focus on asymptotics and theorems!
 - ... and proofs
 - ... hopefully some teachable material

Shannon and Channel Capacity

BSC(
$$p$$
): $X \in \mathbb{F}_2$

$$BSC(p)$$

$$X \text{ w.p. } 1-p$$

$$1-X \text{ w.p. } p$$

- Acts independently on bits
- Capacity = 1 h(p); h(p) = binary entropy!
- $h(p) = p \cdot \log \frac{1}{p} + (1 p) \cdot \log \frac{1}{1 p}$
- This talk: Price of communication at rate R = C $-\epsilon$
 - Smallest n, smallest running times.

"Achieving" Shannon Capacity

- How small can n be? Shannon '48: $n = \Theta\left(\frac{1}{\epsilon^2}\right)$; $\epsilon \stackrel{\text{def}}{=} C R$
- Get $R > C \epsilon$ with polytime algorithms?

Forney '66: time =
$$poly(n, 2^{\frac{1}{\epsilon^2}})$$

Problem articulated by [Luby et al.'95]

running time poly
$$\left(\frac{n}{\epsilon}\right)$$
?

(equiv. want block length
$$n = \text{poly}\left(\frac{1}{\epsilon}\right)$$
?)

- Open till 2008
- Arikan'08: Invented "Polar Codes" ...
- Resolution of open question: Guruswami+Xia'13,
 Hassani+Alishahi+Urbanke'13 Strong analysis

Polar Codes and Martingales

- Arikan: Defined Polar Codes, one for every integer t
- Associated "martingale" $X_0, ..., X_t, ... X_t \in [0,1]$
- tth $X_0, X_1, ..., X_t, ...$ form a martingale if $\forall t, \quad \mathbb{E}[X_t|X_0, ..., X_{t-1}] = X_{t-1}$
 - tth code is $(\epsilon_t + \delta_t)$ -close to capacity, and
 - Pr $\Big[\text{Decode} \Big(\text{BSC} \big(\text{Encode}(m) \big) \Big) \neq m \Big] \leq n \cdot \tau_t$
 - Need $au_t = o\left(\frac{1}{n}\right)$ or $au_t = \frac{1}{n^{\omega(1)}}$ "Strong" Polarization

 - Arikan et al. $\tau = neg(n)$; $\epsilon = o(1)$; [GX13,HAU13] ↑

Part II: Polar Codes Encoding, Decoding, Martingale, Polarization

Lesson 0: Compression ⇒ **Coding**

- Defn: Linear Compression Scheme:
 - (M,D) form compression scheme for $Bern(p)^n$ if
 - Linear map $H: \mathbb{F}_2^n \to \mathbb{F}_2^m$
 - $\Pr_{Z \sim B \operatorname{ern}(p)^n} [D(H \cdot Z) \neq Z] = o(1)$
 - Want: $\frac{m}{n} \le h(p) + \epsilon$, D efficient
- Compression ⇒ Coding
 - Let G be such that $H \cdot G = 0$;
 - Encoder: $X \mapsto G \cdot X$
 - Error-Corrector: $Y = G \cdot X + Z \mapsto Y D(H \cdot Y)$ = $Y - D(H \cdot G \cdot X + H \cdot Z) =_{w.p. \ 1-o(1)} G \cdot X$

G

Question: How to compress?

- Arikan's key idea:
 - Start with 2×2 "Polarization Transform": $(U,V) \rightarrow (U+V,V)$
 - Invertible so does nothing?
 - If U, V independent,
 - then U + V "more random" than either
 - V | U + V "less random" than either
 - Iterate (ignoring conditioning)
 - End with bits that are almost random, or almost determined (by others).
 - Output "random part" to get compression!

The Polarization Butterfly

The Polarization Butterfly: Decoding

Part III: Martingales, Polarization, Strong & Local

Martingales: Toy examples

$$X_{t+1} = \begin{cases} X_t + 2^{-t^2} \text{ w. p. } \frac{1}{2} \\ X_t - 2^{-t^2} \text{ w. p. } \frac{1}{2} \end{cases}$$

Converges!

$$X_{t+1} = \begin{cases} X_t + 2^{-t} \text{ w. p. } \frac{1}{2} \\ X_t - 2^{-t} \text{ w. p. } \frac{1}{2} \end{cases}$$

Uniform on [0,1]

$$X_{t+1} = \begin{cases} \frac{3}{2} X_t \text{ w. p.} \frac{1}{2} & \text{if } X_t \le \frac{1}{2} \\ \frac{1}{2} X_t \text{ w. p.} \frac{1}{2} & \text{if } X_t \le \frac{1}{2} \end{cases}$$

Polarizes (weakly)!

$$X_{t+1} = \begin{cases} X_t^2 \text{ w. p.} \frac{1}{2} & \text{if } X_t \le \frac{1}{2} \\ 2X_t - X_t^2 \text{ w. p.} \frac{1}{2} & \text{if } X_t \le \frac{1}{2} \end{cases}$$

Polarizes (strongly)!

Arikan Martingale

Issues:

Local behavior – well understood Challenge: Limiting behavior

Main Result: Definition and Theorem

Strong Polarization: (informally)

$$\Pr[X_t \in (\tau, 1 - \tau)] \le \epsilon \text{ if } \tau = 2^{-\omega(t)} \text{ and } \epsilon = 2^{-O(t)}$$
 formally $\forall \gamma > 0 \ \exists \beta < 1, c \ s. \ t. \ \forall t \ \Pr[X_t \in (\gamma^t, 1 - \gamma^t)] \le c \cdot \beta^t$

■ Local Polarization: <</p>

Both definitions qualitative!

- Variance in the middle: $X_t \in (\tau, 1 \tau)$ $\forall \tau > 0 \ \exists \sigma > 0 \ s.t. \ \forall t, X_t \in (\tau, 1 - \tau) \Rightarrow Var[X_{t+1} | X_t] \ge \sigma$
- Suction at the ends: $X_t \notin (\tau, 1 \tau)$

$$\exists \theta > 0, \forall c < \infty, \exists \tau > 0 \text{ s. t. } X_t < \tau \Rightarrow \Pr\left[X_{t+1} < \frac{X_t}{c}\right] \ge \theta$$

Theorem: Local Polarization ⇒ Strong Polarization.

"low end" condition. Similar condition for high end

Proof (Idea):

Step 1: The potential $\Phi_t \triangleq \min\{\sqrt{X_t}, \sqrt{1-X_t}\}$ decreases by constant factor in expectation in each step.

$$\Rightarrow \mathbb{E}[\Phi_T] = \exp(-T)$$

$$\Rightarrow \Pr[X_T \ge \exp(-T/2)] \le \exp(-T/2)$$

- Step 2: Next T time steps, X_t plummets whp
 - 2.1: Say, If $X_t \le \tau$ then $\Pr\left[X_{t+1} \le \frac{X_t}{100}\right] \ge 1/2$.
 - 2.2: $\Pr[\exists t \in [T, 2T] \ s. \ t. \ X_t > \tau] \le X_T / \tau \text{ [Doob]}$
 - 2.3: If above doesn't happen $X_{2T} < 5^{-T}$ whp

QED

Local Polarization of Arikan Martingale

- Variance in the Middle:
 - Roughly: $(H(p), H(p)) \rightarrow (H(2p-2p^2), 2H(p) H(2p-2p^2))$
 - $p ∈ (τ, 1 τ) ⇒ 2p 2p^2$ far from p
 - + continuity of $H(\cdot) \Rightarrow H(2p-2p^2)$ far from H(p)
- Suction:
 - High end: $H\left(\frac{1}{2} \gamma\right) \to H\left(\frac{1}{2} \gamma^2\right)$ $H\left(\frac{1}{2} \gamma\right) = 1 \Theta(\gamma^2) \Rightarrow 1 \gamma^2 \to 1 \Theta(\gamma^4)$
 - Low end: $H(p) \approx p \log \frac{1}{p}$; $2H(p) \approx 2p \log \frac{1}{p}$;

$$H(2p-2p^2) \approx H(2p) \approx 2p \log \frac{1}{2p} \approx 2H(p) - 2p \approx \left(2 - \frac{1}{\log \frac{1}{p}}\right)H(p)$$

Dealing with conditioning – more work (lots of Markov)

"New contributions"

- So far: Reproduced old work (simpler proofs?)
- Main new technical contributions:
 - Strong polarization of general transforms
 - E.g. $(U, V, W) \rightarrow (U + V, V, W)!$
 - Exponentially strong polarization [BGS'18]
 - Suction at low end is very strong!
 - Random $k \times k$ matrix yields $X_{t+1} \approx X_t^{k.99}$ whp
 - Strong polarization of Markovian sources [GNS'19?]
 - Separation of compression of known sources from unknown ones.

Conclusions

- Importance of Strong Polarization!
- Generality of Strong Polarization!
- Some technical questions:
 - Best poly $\left(\frac{1}{\epsilon}\right)$?
 - Now turn to worst case errors? (with listdecoding)

Thank You!