Streaming CSPs

Madhu Sudan
Harvard University

Based on joint works with Chi-Ning Chou, Alexander Golovnev, Noah Singer, Ameya Velingker and Santhoshini Velusamy.
This Talk

- CSPs (& approximation & streaming)
- Background
- Our results
- Future directions
Constraint Satisfaction Problems (CSPs)

- Class of infinitely many problems.
Constraint Satisfaction Problems (CSPs)

- Class of infinitely many problems.

- Specified by \(q, k \) and family \(F \subseteq \{ f : [q]^k \rightarrow \{0,1\} \} \).

- Instance of MaxCSP\((F)\):
 \[\Psi = (X_1, ..., X_n; C_1, ..., C_m) \]
 Constraint \(C_j(X) = f_j(X_{i_1(j)}, ..., X_{i_k(j)}) ; f_j \in F \)

- \(\text{opt}(\Psi) \equiv \max_{a \in [q]^n} \{ \sum_j C_j(a) \} \)
Constraint Satisfaction Problems (CSPs)

Class of infinitely many problems. ▶️ MaxCSP(F)

Specified by q, k and family $F \subseteq \{f: [q]^k \rightarrow \{0,1\}\}$.

Instance of MaxCSP(F): $\Psi = (X_1, ..., X_n; C_1, ..., C_m)$;
Constraint $C_j(X) = f_j(X_{i_1(j)}, ..., X_{i_k(j)})$; $f_j \in F$

$\text{opt}(\Psi) \equiv \max_{a \in [q]^n} \{\sum_j C_j(a)\}$

Examples:

MaxCut ($F = \{\oplus\}$)
MaxDicut ($F = \{x \land \overline{y}\}$)
Max 3SAT ($|F| = 11$), Max Exact 3SAT ($|F| = 4$), Max q-Colorability.
Constraint Satisfaction Problems (CSPs)

“Special Case”: Boolean MaxCSP(F):

- \(q = 2 \);
- Constraints \(C = f(X_1, \overline{X_2}, ..., \overline{X_k}) \)
 - Constraints applied to literals.

Warning: MaxCSP(F) ≠ Boolean MaxCSP(F)

\(\forall F \exists G \) s.t. Boolean MaxCSP(F) = MaxCSP(G). (converse not true. MaxCut, MaxDicut ...)

April 8, 2022
Streaming CSPs
Streaming & Approximation

- Streaming input
 - Streaming: \(s(n) \)-space algorithm – gets one constraint at a time.
 - Sketching: Maintains sketch \(S(\sigma) \) with \(|S(\sigma)| \leq s(n)\);
 - Restriction: \((S(\sigma), S(\tau)) \rightarrow S(\sigma \circ \tau) \)
 - Space milestones: polylog, sqrt, or (nearly-) linear.

- Approximations:
 - Usual notion: \(\alpha \)-approximation:
 - Output \(v \) s.t. \(\alpha \cdot \text{opt}(\Psi) \leq v \leq \text{opt}(\Psi) \)
 - Refined notion: \((\gamma, \beta) \)-distinguishability:
 - Output Yes if \(\text{opt}(\Psi) \geq \gamma \), No if \(\text{opt}(\Psi) \leq \beta \)
 - Equivalence: \(\alpha = \min_{\gamma} \max_{\beta} \beta / \gamma \)
Streaming MaxCut

April 8, 2022

Streaming CSPs
Streaming MaxCut

[Diagram of points connected by lines]

April 8, 2022
Streaming MaxCut
Streaming MaxCut
Streaming MaxCut
Streaming MaxCut
Streaming MaxCut
Streaming MaxCut

April 8, 2022
Streaming CSPs
Streaming MaxCut
Streaming MaxCut
Streaming MaxCut
Streaming MaxCut
Streaming MaxCut

[Diagram showing a graph with points connected by lines]
Brief History

- 2011 Bertinoro W’shop (P. 45): “We know nothing +/-”
- 2015-19: Lower bounds for MaxCut [KKS, KKSv, KK]
 - Kapralov-Krachun: $\frac{1}{2} + \epsilon$-approximation requires $\Omega(n)$-space (in n vertex graph) (streaming).
- 2017-20: Algorithms for Max DiCut, Max SAT
 - Guruswami-Velingker-Velusamy: DiCut
 - Chou-Golovnev-Velusamy: DiCut, Max SAT
- 2020: Sketching Classification
 - Chou-Golovnev-Velusamy: Classify all Boolean MaxCSP with $k = q = 2$
Why study CSPs

- Contain some problems of direct interest
 - Max Cut, Max Dicut, Max colorability
- Allow possibility of classification!
- Highlight general algorithms
 - Norm approximations (already used)
 - Local Exploration
 - Crude snapshots
- Identify Phenomena:
 - No $2^{\sqrt{\log n}}$-space algorithms?
Our Results

- [CGSV21]:
 - Dichotomy for sketching (polylog vs. sqrt)
 - Implications for dynamic CSPs [Li, Nguyen, Woodruff, Ai Hu Li Woodruff]
 - Non-trivial (polylog) algorithms for infinitely many dynamic CSPs
 - General sqrt lower bounds for broad classes (“one-wise ind.”, “padded one-wise ind.”) in insertion-only setting.

- [CGSVVV 21]: Linear space lower bounds for subclass of “one-wise-ind”.
 - Pins approximability of all MaxCSP(F) to within q-factor (trivial alg vs. linear space).

- [SSV21]: No sublinear algorithms for “Ordering CSPs”
GVV+CGV Algorithms for Max DiCut

- Define \(\text{Bias}(v) \defeq \text{indeg}(v) - \text{outdeg}(v) \)
- \(\text{Bias}(G) \defeq \frac{1}{2} \sum_v |\text{Bias}(v)| \)
- Claim 1 [GVV]:
 - Bias can be estimated arbitrarily closely in polylog space.
 - \(\text{Dicut}(G) \leq \frac{\text{Bias}(G) + m}{2} \)
 - \(\text{Bias}(G) \leq \text{Dicut}(G) \) (Greedy rounding)
 - Output: \(\max \left\{ \frac{m}{4}, \text{Bias}(G) \right\} \Rightarrow 2/5\)-approx.

- Claim 2 [CGV]: \(\text{Bias}(G) \leq \frac{m}{3} \Rightarrow \text{Dicut}(G) \geq \frac{m}{4} + \frac{\text{Bias}(G)^2}{4(m-2\text{Bias}(G))} \)
 (Rand. Rounding w.p. \(\frac{1}{2} - \frac{\text{Bias}(G)}{2(m-2\text{Bias}(G))} \)) \(\Rightarrow 4/9\)-approx.
Generalizing to other CSPs: Challenges

- What is bias, say for $f(x, y, z) = x \land (y \oplus z)$
 - E.g.: $x \land (a_1 \oplus a_2), a_3 \land (x \oplus y), y \land (x \oplus a_4)$

- Why is ℓ_1-estimation useful in Dicut approximation
 - $\ell_1(x_1, \ldots, x_n) = \max_{a_1 \ldots a_n \in \{-1,1\}} \{\sum_i a_ix_i\}$
 - Useful generalization: $||M||_{1,\infty} := \max_{a \in [q]^n} \{\sum_i M_{i,a(i)}\}$
 - Computable in polylog space

- Dicut Analysis: Graph theory, some 3-var. calculus, Why did rounding end up optimal?
Algorithms - 1

- Abstracting GVV, CGV algorithm (|F| = 1)
 - For every \(i \in [n] \) maintain (non-normalized) distribution \(D_i \) over \([q] \).
 - In the end, round using max. likelihood over \(D_i \).
 - Update?
 - If \(X_i \) appears as \(j \)th var in constraint, need to perturb \(D_i \). How?
 - Idea:
 - (Initially) Guess & fix some \(\lambda_{j\sigma}, j \in [k], \sigma \in [q] \)
 - (Update on \((i, j)\)) Add \(\lambda_{j\sigma} \) to \(D_i(\sigma) \) for every \(\sigma \in [q] \)
Algorithms - 2

- Streaming implementation?
 - Can’t output rounding of D_i for $i \in [n]$
 - But can compute $\frac{1}{m} \sum_i \max_{\sigma} D_i(\sigma)$
 - $(1, \infty)$ norm of $D \in \mathbb{R}^{n \times q}$. [Andoni Krauthgamer Onak]

- What $\lambda_{j\sigma}$ to use?
 - Don’t know! (e.g., $f(x_1, \ldots, x_k) = \text{sign}(\sum_j (-1.1)^j x_j)$)

- “Theorem”: Algorithm works if $\exists \lambda_{j\sigma}, \tau$ s.t.
 - $\text{opt}(\Psi) \geq \gamma \Rightarrow \frac{1}{m} \sum_i \max_{\sigma} D_i(\sigma) \geq \tau$
 - $\text{opt}(\Psi) \leq \beta \Rightarrow \frac{1}{m} \sum_i \max_{\sigma} D_i(\sigma) < \tau$

- Theorem [CGSV]: Criterion above is decidable given F.
Only use
const set
by \(\overline{a} \)

\[\text{Opt} \geq 0 \]

\[\text{Opt} \leq \beta \]
Decidability & Criterion

- Main insight: Suffices to look at instances on kq variables.
- Instance = distribution of constraints over kq variables.
- ...
- \exists convex sets K_Y^Y and $K_N^N \subseteq \Delta([q])^k \subseteq \mathbb{R}^{qk}$ s.t. Algorithm exists if $K_Y^Y \cap K_N^N = \emptyset$
Complexity?

- If Algorithm does not exist, then?
 - There exist distributions D_Y and $D_N \in \Delta([q]^k)$ with matching (one-wise) marginals corresponding to two “interesting” instances.

- Theorem: If such D_Y and D_N exist then $o(\sqrt{n})$ space sketching algorithm can’t solve (γ, β)-distinguishability!

- One-wise Theorem: If such D_Y and D_N exist with $D_N = \text{Unif}([q]^k)$ then $o(\sqrt{n})$ space streaming algorithm can’t solve (γ, β)-distinguishability!

Extends to Padded One Wise ($k=q=2$):

$$D_Y = \tau D_0 + (1 - \tau) D_1; D_N = \tau D_0 + (1 - \tau) \text{Unif}([q]^k)$$
Underlying Communication Problem

- Randomized Mask Detection:
 - Alice $\leftarrow X \sim \text{Unif}([q]^n)$
 - Bob $\leftarrow \text{Seq. of disjoint masked projections of } X$
 - Projection: $X \rightarrow (S, X|_S)$ $S \subseteq [n]$, $|S| = k$
 - Masked: $(S, X|_S) \rightarrow (S, X|_S + m \text{ (mod } q))$
 - YES: $m \sim D_Y$; NO: $m \sim D_N$
 - Sequence: $S_1, ..., S_{0001n}$
 - Disjoint: $S_i \cap S_j = \emptyset$
 - Challenge: Distinguish YES from NO
- Thm: Requires $\Omega(\sqrt{n})$ bits Alice \rightarrow Bob if marginals of D_Y and D_N match.
Linear Space Lower Bounds

- \(F = \{f\} \) case
- \(\rho(F) \equiv \inf_{\Psi} \text{opt}(\Psi) \)
- Trivial approximation factor = \(\rho \)
- Theorem: If \(f^{-1}(1) \) contains a “line” then \(F \) has no non-trivial approximation in sublinear space.
 - Line \(\equiv \{a + (i, \ldots, i)(\text{mod } q)|i \in [q]\}, \text{ for } a \in [q]^k \)
- Thm’: If \(f^{-1}(1) \) contains \(\omega \) fraction of a line then \(\text{MaxCSP}(F) \) has no sublinear approximation better than \(\frac{\rho}{\omega} \)
- Proof: Extends (and compresses?) Kapralov-Krachun.
Open Questions

- Sketching = Streaming in sqrt setting?
 - Extend sqrt lower bounds from sketching to streaming?
 - Challenge: Walk length algorithm!
Open Questions

- Sketching = Streaming in sqrt setting?
- Extend sqrt lower bounds from sketching to streaming!
- Challenge: Walk length algorithm!

(Suggested by Saxena et al.)

Walk length algorithm:

For every pattern $\rightarrow \leftarrow \cdots \rightarrow$

Pick $S \subset [n], |S| = \text{polylog}(n)$

Follow patterned path from S till we run out of stream.

Look at the distribution of path lengths when we stop.

Different for $\text{opt} \geq \gamma$ vs. $\text{opt} \leq \beta$?
Open Questions

- Sketching = Streaming in sqrt setting?
 - Extend sqrt lower bounds from sketching to streaming!
 - Challenge: Walk length algorithm!

- Sqrt = Linear?
 - Is there a dichotomy at linear space?
 - Challenge: Template-based algorithms!
 - Can Dicut approximation be improved with \(o(n) \) space?
Open Questions

- Sketching = Streaming?
 - Extend sqrt lower bounds from sketching to streaming!
 - Challenge: Walk length algorithm!

- Sqrt = Linear?
 - Is there a dichotomy at linear space?
 - Challenge: Template-based algorithms!

- Can \textbf{Dicut} approximation be improved with \(o(n) \) space?

April 8, 2022

Streaming CSPs

Template algorithm (for bounded degree graphs)

Classify vertices by \((\text{indeg}, \text{outdeg})\)

Estimate fraction of edges from class \((i, j) \rightarrow (k, \ell)\)

This is the template

Different for \(\text{opt} \geq \gamma\) vs. \(\text{opt} \leq \beta\)?
Open Questions

- Sketching = Streaming?
 - Extend sqrt lower bounds from sketching to streaming!
 - Challenge: Walk length algorithm!

- Sqrt = Linear?
 - Is there a dichotomy at linear space?
 - Challenge: Template-based algorithms!
 - Can Dicut approximation be improved with o(n) space?
 - \(\omega(n) \)-lower bounds? (Trivial: \(O(n \log n) \ldots \)
Thank You!
Thank You!