Streaming & Sketching CSPs

Madhu Sudan Harvard University

Based on joint works with Chi-Ning Chou, Alexander Golovnev, Noah Singer, Ameya Velingker and Santhoshini Velusamy.

July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

This Talk

- CSPs (& approximation & streaming/sketching)
- Our results
- Some Proof Ideas

Constraint Satisfaction Problems (CSPs)

Class of infinitely many problems.

- Specified by q, k and family $F \subseteq \{f: [q]^k \rightarrow \{0,1\}\}$.
- Instance of MaxCSP(F): $\Psi = (X_1, \dots, X_n; C_1, \dots, C_m)$; Constraint $C_j(X) = f_j(X_{i_1(j)}, \dots, X_{i_k(j)}); f_j \in F$ $opt(\Psi) \equiv \max_{a \in [q]^n} \{ \sum_j C_j(a) \}$
- Examples:
 - MaxCut ($F = \{ \bigoplus \}$)
 - MaxDicut ($F = \{x \land \overline{y}\}$)
 - Max 3SAT (|F| = 11), Max Exact 3SAT (|F| = 4), Max q-Colorability.

Constraint Satisfaction Problems (CSPs)

- "Special Case": Boolean MaxCSP(F):
 - q = 2;
 - Constraints $C = f(X_1, \overline{X_2}, ..., \overline{X_k})$
 - Constraints applied to <u>literals</u>.
 - Warning: $MaxCSP(F) \neq Boolean MaxCSP(F)$
 - ▼F∃G s.t. Boolean MaxCSP(F) = MaxCSP(G). (converse not true. MaxCut, MaxDicut ...)

Streaming & Approximation

- Streaming input
 - Streaming: s(n)-space algorithm gets one constraint at a time.
 - Sketching: Maintains sketch $S(\sigma)$ with $|S(\sigma)| \leq s(n)$;

6. 62 ~ .

• Restriction: $(S(\sigma), S(\tau)) \rightarrow S(\sigma \circ \tau)$

- Space milestones: polylog, sqrt, or (nearly-)linear.
- Approximations:
 - Usual notion: *a*-approximation:

• Output v s.t. $\alpha \cdot opt(\Psi) \le v \le opt(\Psi)$

Refined notion: (γ, β)-distinguishability:

• Output Yes if $opt(\Psi) \ge \gamma$, No if $opt(\Psi) \le \beta$

Equivalence: $\alpha = \min \max_{\alpha} \beta / \gamma$

July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

S(T)

 $\overline{}$

22R

Trivial Approximations:

• $\tilde{O}(n)$ -space, 1 - o(1)-approx.

- Maintain $\tilde{O}(n)$ -constraints. Solve optimally on those using exponential time.
- O(1)-space, ρ_{\min} -approx.
 - **Defn:** $\rho_{\min}(F) \coloneqq \min_{\Psi} \{ \operatorname{val}_{\Psi} \}$
 - Notes: Usually $\rho_{\min} > 0$ (unless $0 \in F$)
 - For Boolean CSPs (on literals)

• $\rho_{\min}(f) = 2^{-k} \cdot |f^{-1}(1)|$ (= value of random assgmt).

• E.g. $\rho_{\min}(\text{MaxCut}) = \frac{1}{2}$

Key question: (When) can we do better than trivial?

Why study CSPs

- Contain some problems of direct interest
 - Max Cut, Max Dicut, Max colorability
- Allow possibility of classification!
- Highlight general algorithms
 - Norm approximations (already used)
 - Local Exploration
 - Crude snapshots
- Identify Phenomena:
 - No $2^{\sqrt{\log n}}$ -space algorithms?

Brief History

- 2011 Bertinoro W'shop (P. 45): "We know nothing +/-"
- 2015-19: Lower bounds for MaxCut [KKS,KKSV,KK]
 - Kapralov-Krachun: $\frac{1}{2} + \epsilon$ -approximation requires $\Omega(n)$ -space (in n vertex graph) (streaming).
- 2017-20: Algorithms for Max DiCut, Max SAT
 - Guruswami-Velingker-Velusamy: DiCut
 - Chou-Golovnev-Velusamy: DiCut, Max SAT
- 2020: Sketching Classification
 - Chou-Golovnev-Velusamy: Classify all Boolean MaxCSP with k = q = 2

Our Results

[CGSV21]:

- Dichotomy for sketching (polylog vs. sqrt)
- Polylog space algorithms for infinitely many CSPs
- Ω(√n) space lower bounds for broad classes ("one-wise ind.", "padded one-wise ind.").
- [CGSVV 21]: Linear space lower bounds for subclass of "one-wise-ind".
 - Pins approximability of all MaxCSP(F) to within q-factor (trivial alg vs. linear space).
- [SSV21]: No sublinear algorithms for "Ordering CSPs"

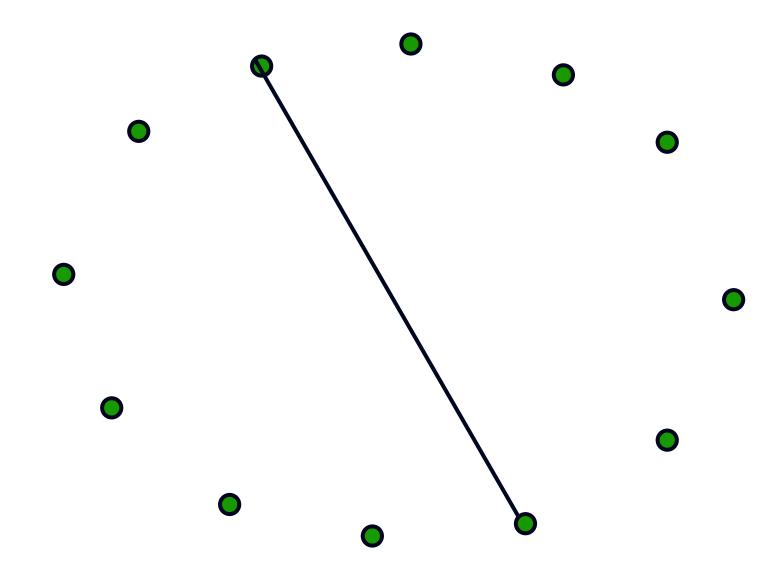
Proof Ideas

July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

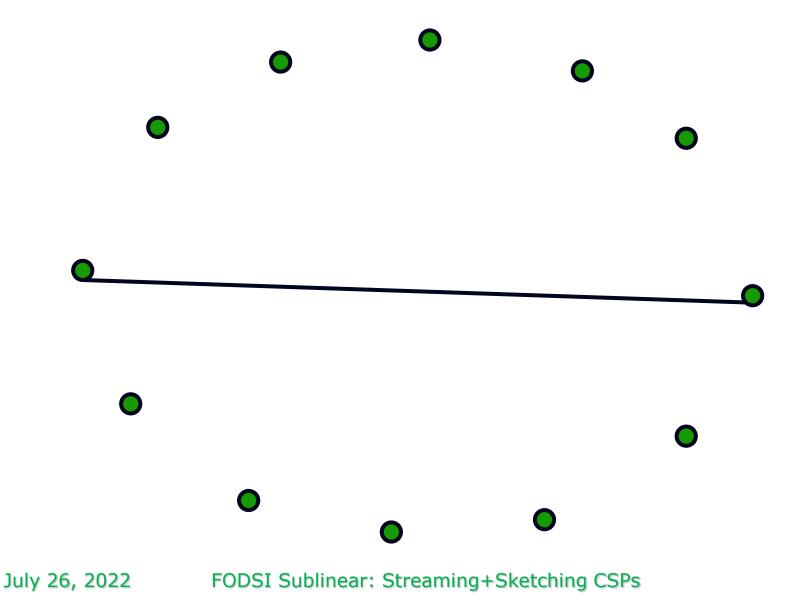
Max Cut Lower Bound

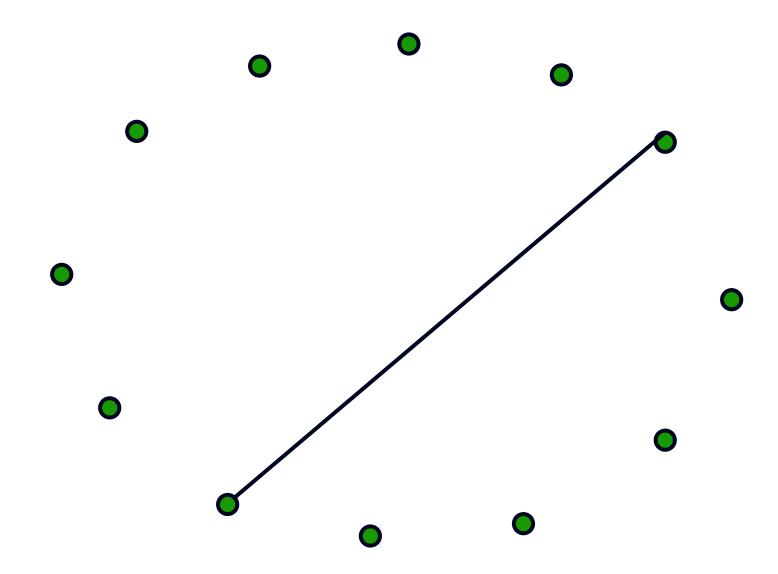
Hard distributions:

- YES: Random union of matchings crossing hidden bipartition
- NO: Random union of matchings.
- Analysis:
 - Divide long stream into O(1) smaller substreams each substream=matching.
 - Algorithm learns nothing in any single substream ← Boolean Hidden Matching Lower Bound [GKKRW]
 - Hybrid argument to combine O(1) substreams.
 - Yields $\Omega(\sqrt{n})$ space lower bound to beat trivial approximation.
- $\Omega(n)$ lower bound more complex omitted.

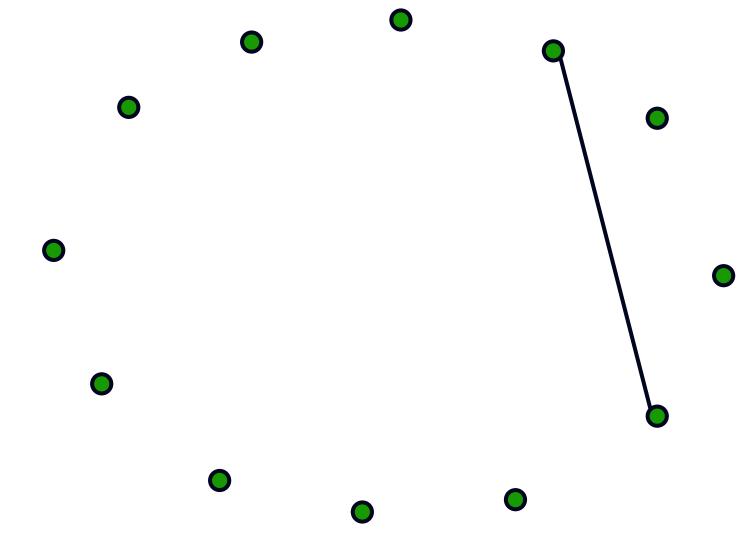


July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs



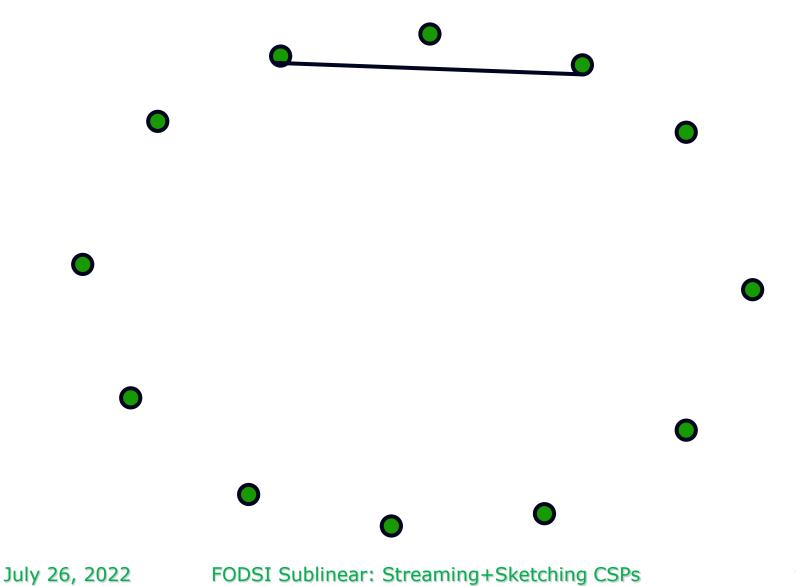


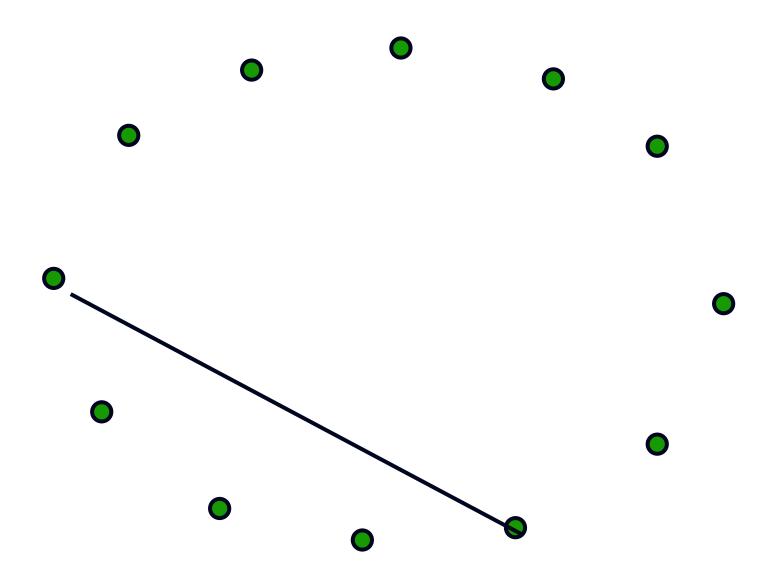
July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs



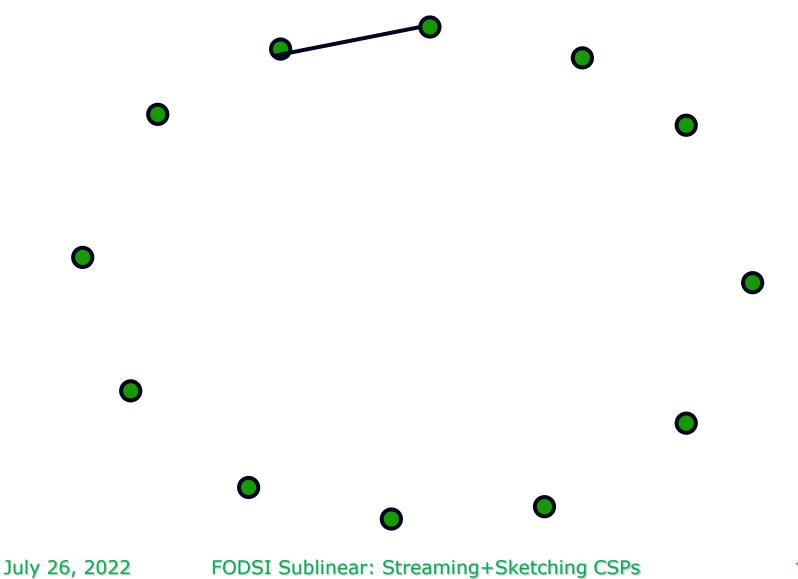
15 of 51

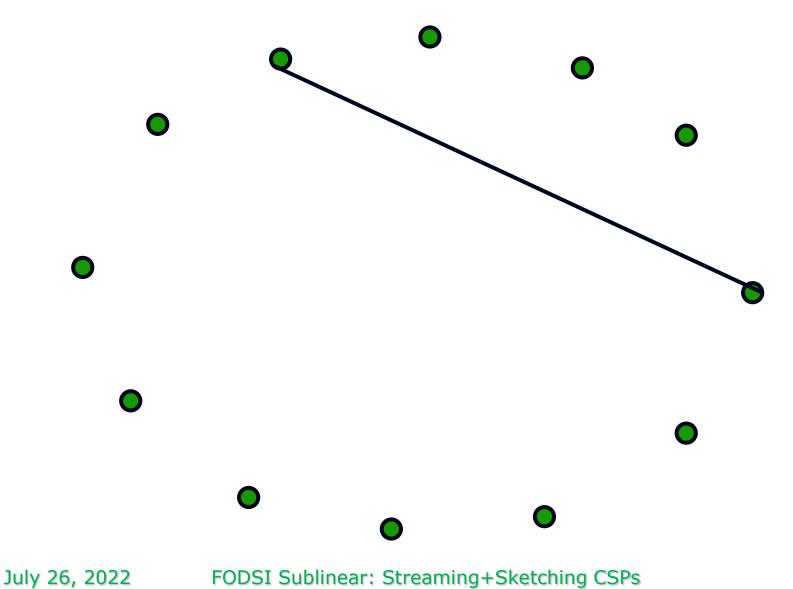
July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

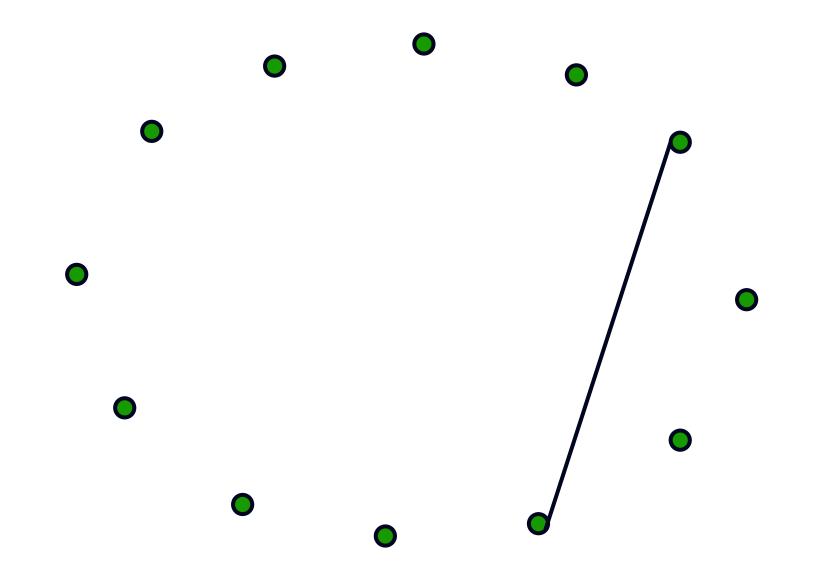




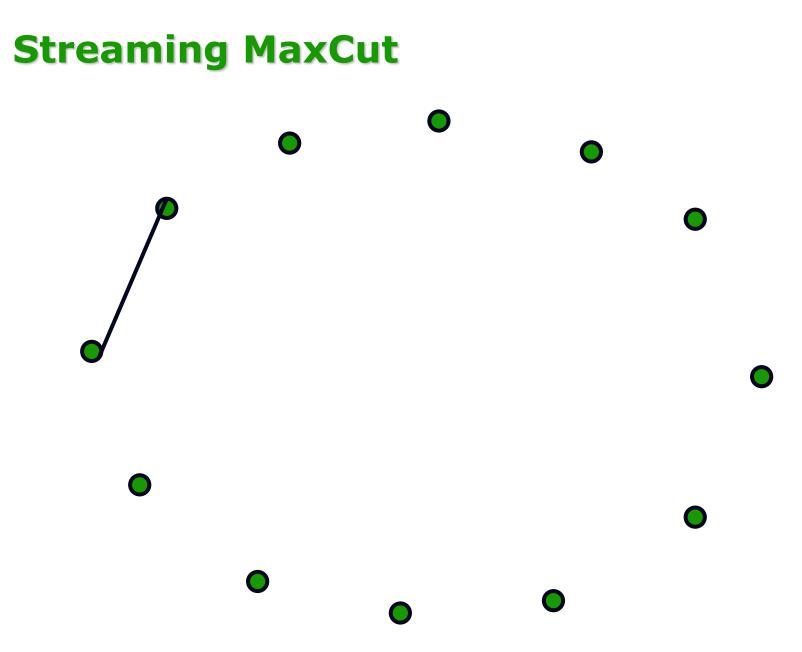
July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs



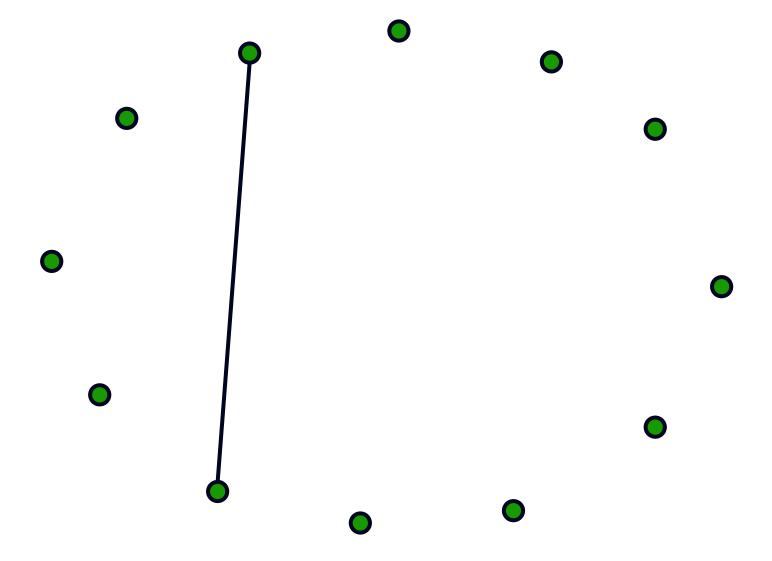




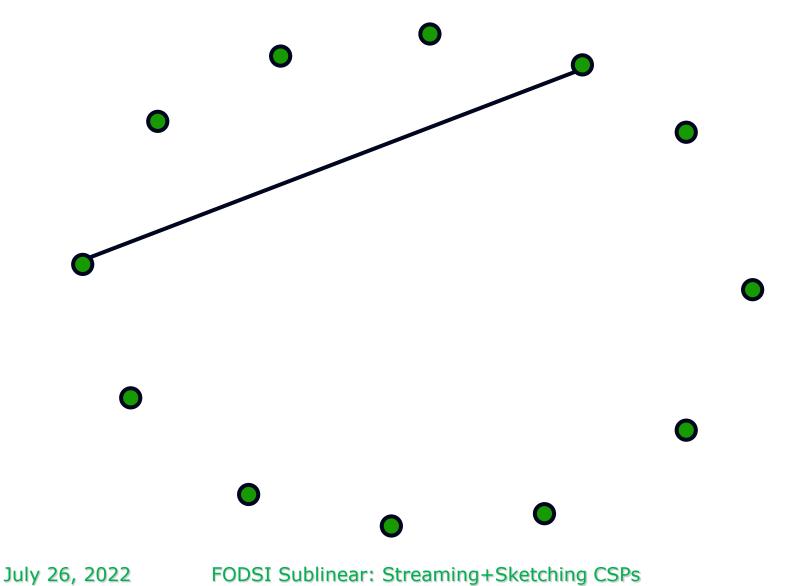
July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

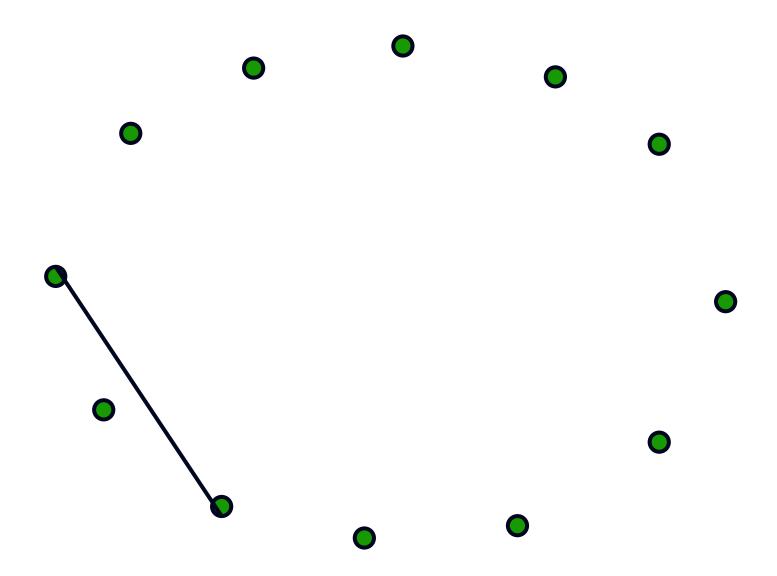


July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

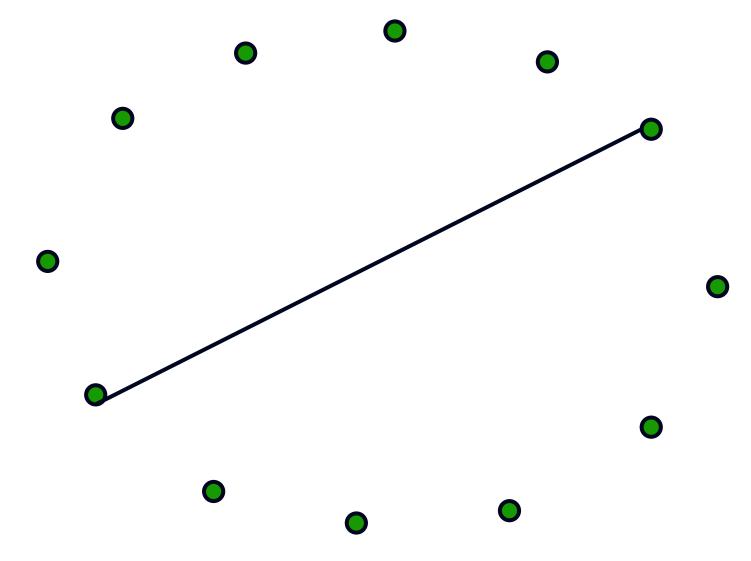


July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

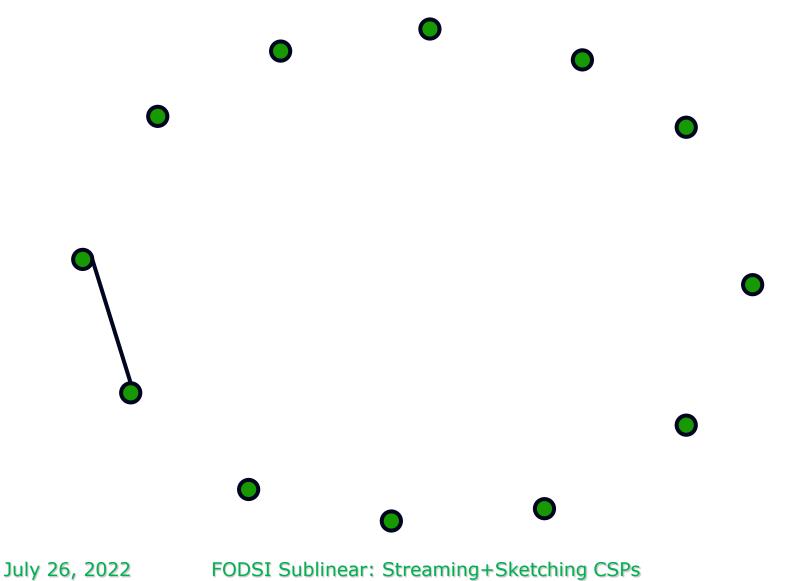


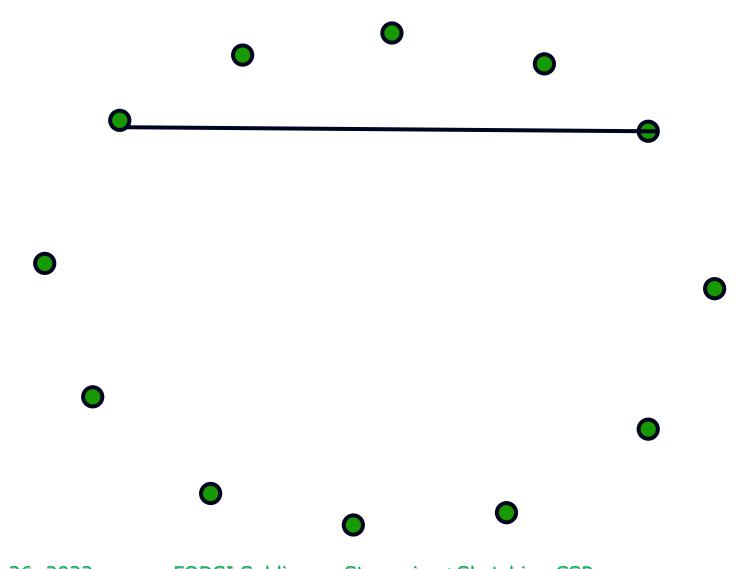


July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

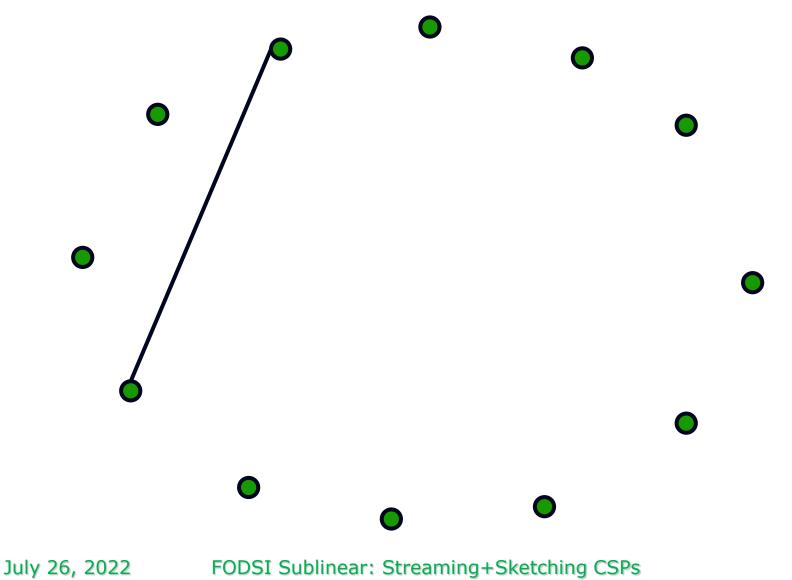


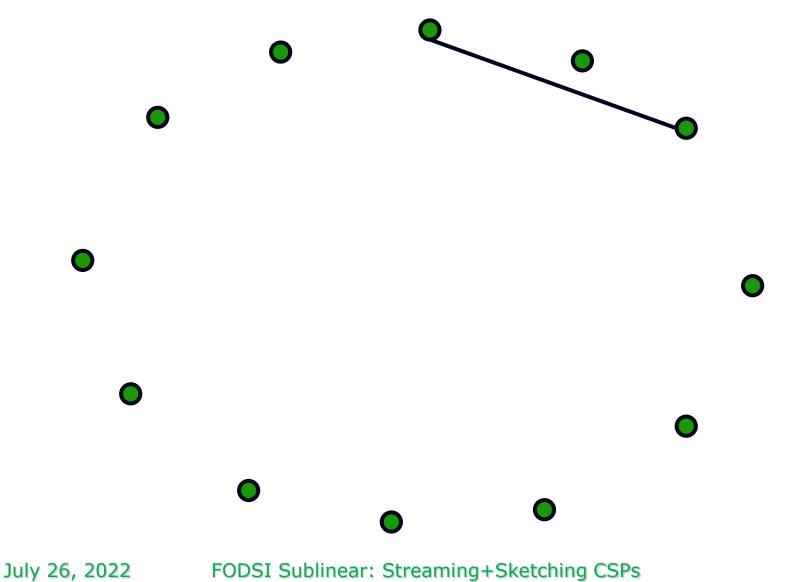
July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

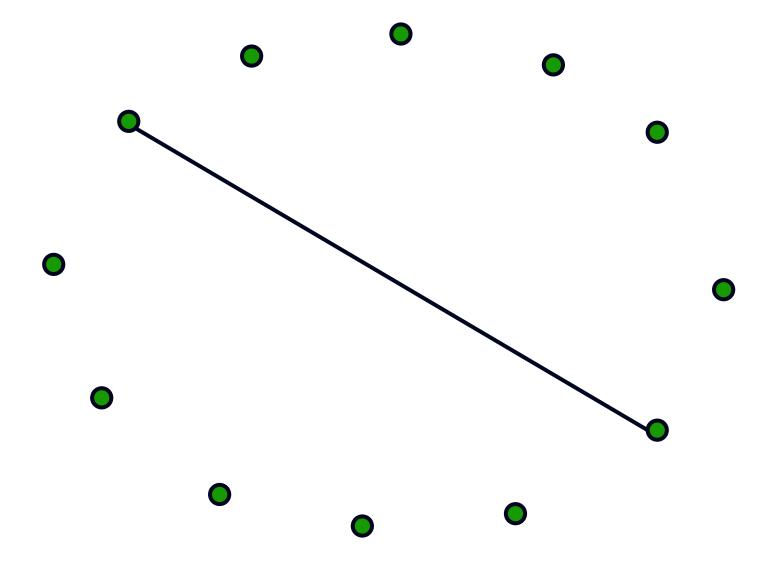




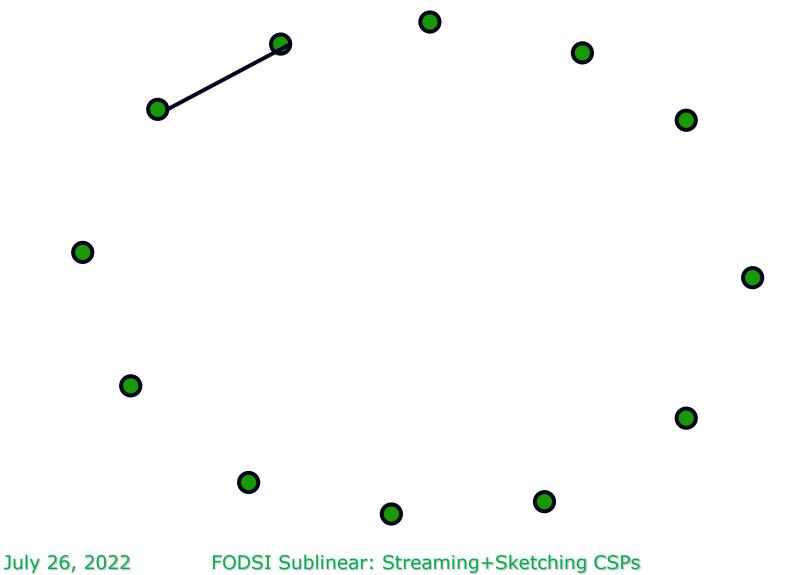
July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

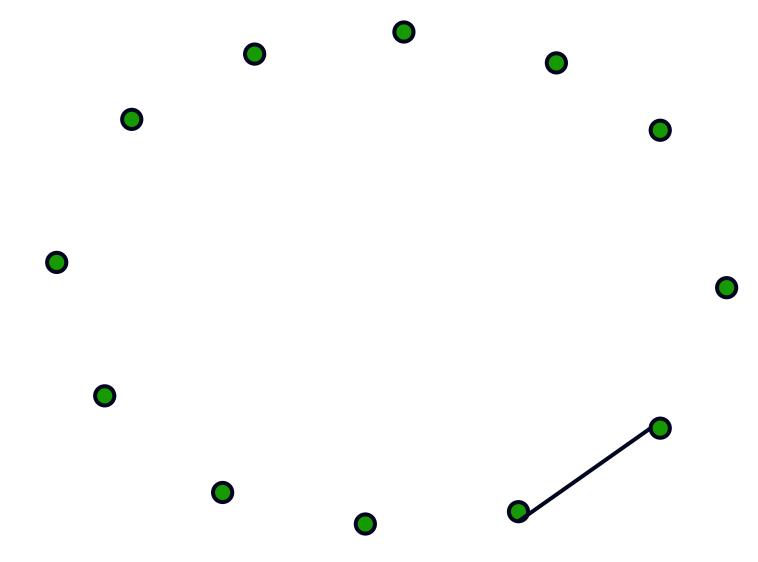




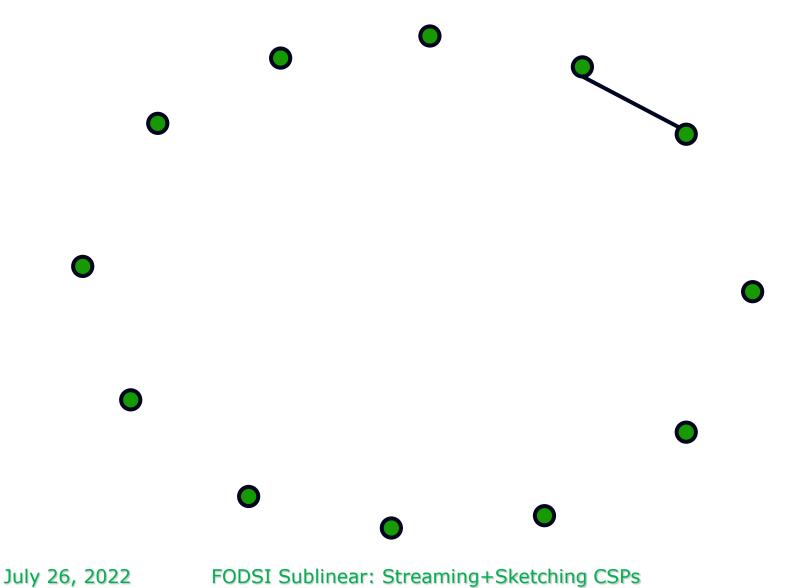


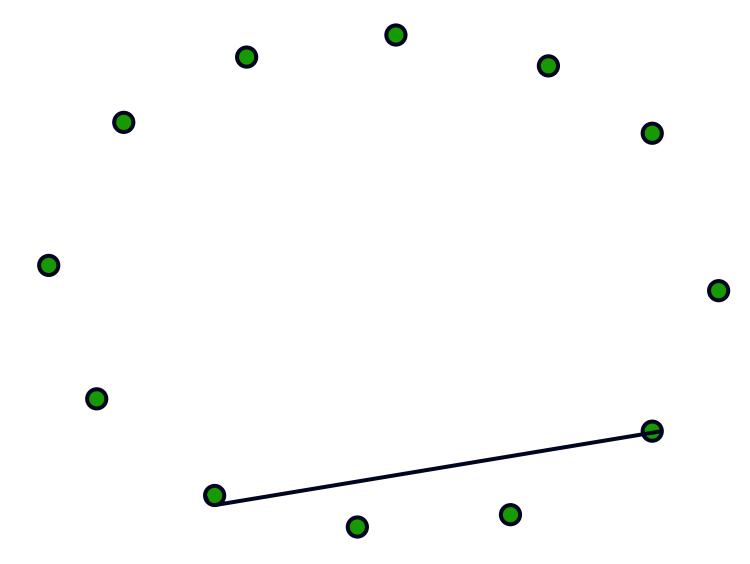
July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs



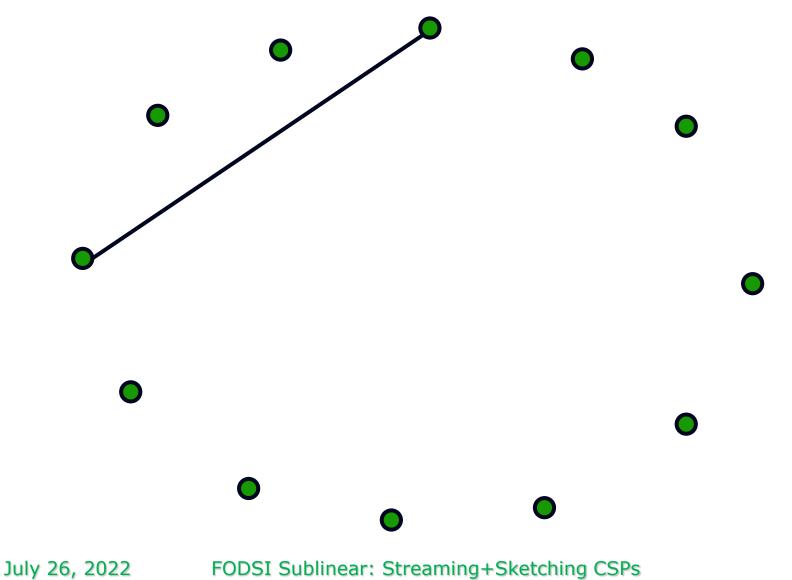


July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

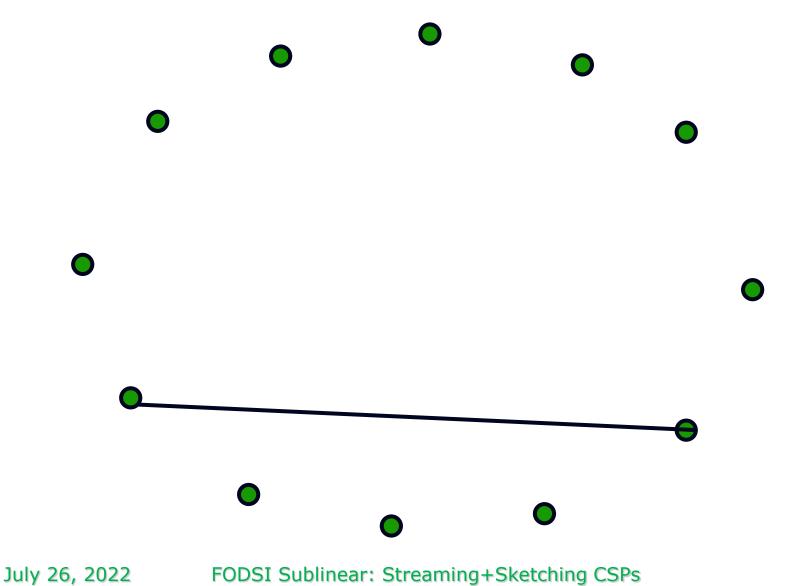




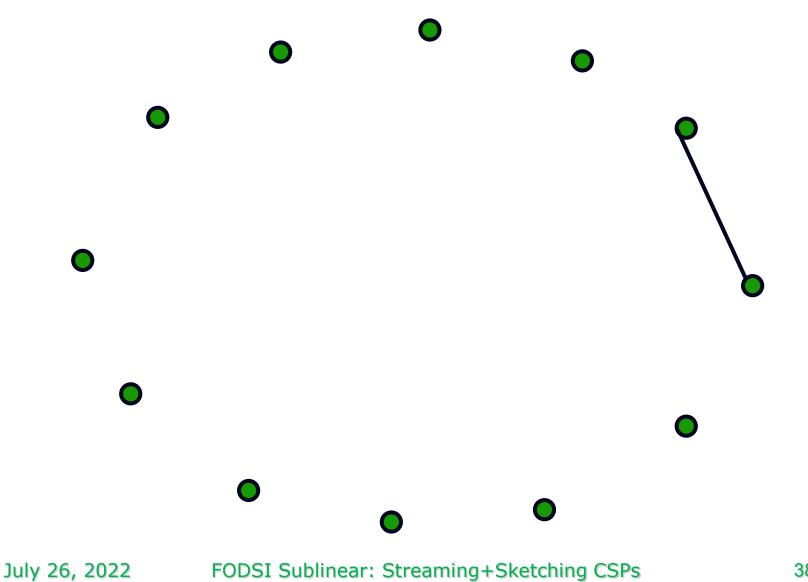
July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs



Streaming MaxCut

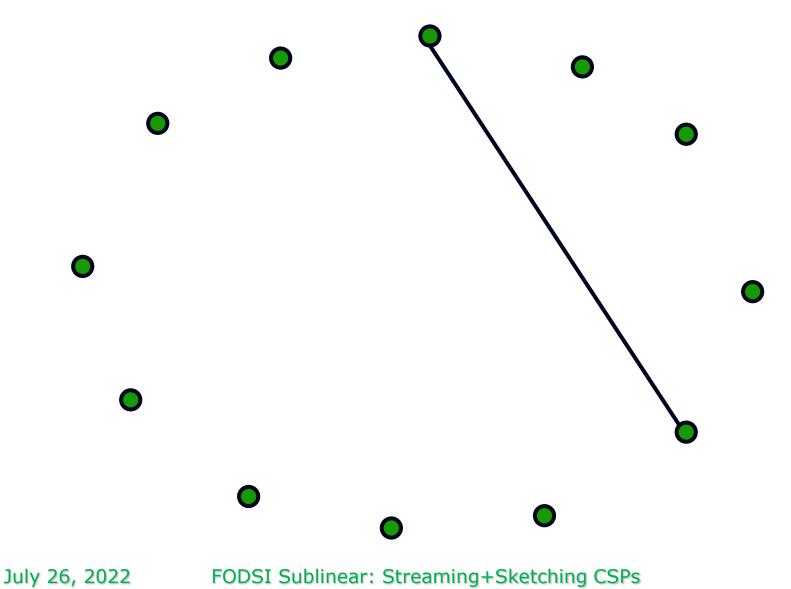


Streaming MaxCut



38 of 51

Streaming MaxCut



39 of 51

Max Cut Lower Bound

Hard distributions:

- YES: Random union of matchings crossing hidden bipartition
- NO: Random union of matchings.
- Analysis:
 - Divide long stream into O(1) smaller substreams each substream=matching.
 - Algorithm learns nothing in any single substream ← Boolean Hidden Matching Lower Bound [GKKRW]
 - Hybrid argument to combine O(1) substreams.
 - Yields $\Omega(\sqrt{n})$ space lower bound to beat trivial approximation.
- $\Omega(n)$ lower bound more complex omitted.

Boolean Hidden Matching Problem

- One-way communication problem.
- Alice gets a random cut on vertex set [n].
- Bob gets a random matching on [n] of size αn along with a 0/1 label on each edge.
 - NO: 0/1 labels random
 - YES: $1 \Rightarrow$ edge crosses cut, $0 \Rightarrow$ doesn't cross.
- Challenge: Alice sends message to Bob, Bob to distinguish YES from NO.
- Lower bound theorem [GKKRW]: $\Omega(\sqrt{n})$ communication required.

GVV+CGV Algorithms for Max DiCut

- Define $Bias(v) \stackrel{\text{def}}{=} indeg(v) outdeg(v)$
- Bias(G) $\stackrel{\text{def}}{=} \frac{1}{2} \sum_{v} |Bias(v)|$
- Claim 1 [GVV]:
 - Bias can be estimated in polylog space. (ℓ_1 -norm estimation)
 - $Dicut(G) \leq \frac{Bias(G)+m}{2}$
 - $Bias(G) \leq Dicut(G)$ (Greedy rounding)
 - Output: $\max\left\{\frac{m}{4}, Bias(G)\right\} \Rightarrow 2/5\text{-approx.}$

• Claim 2 [CGV]: Bias(G) $\leq \frac{m}{3} \Rightarrow Dicut(G) \geq \frac{m}{4} + \frac{Bias(G)^2}{4(m-2Bias(G))}$ (Rand. Rounding w.p. $\frac{1}{2} - \frac{Bias(G)}{2(m-2Bias(G))}$) $\Rightarrow 4/9$ -approx.

July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

Generalizing to other CSPs: Challenges

- What is bias, say for f(x, y, z) = x ∧ (y ⊕ z)
 E.g.: x ∧ (a₁ ⊕ a₂), a₃ ∧ (x ⊕ y), y ∧ (x ⊕ a₄)
- Why is ℓ_1 -estimation useful in Dicut approximation

•
$$\ell_1(x_1, \dots, x_n) = \max_{a_1 \dots a_n \in \{-1, 1\}} \{ \sum_i a_i x_i \}$$

• Useful generalization: $||M||_{\{1,\infty\}} \coloneqq \max_{a \in [a]^n} \{\sum_i M_{i,a(i)}\}$

Computable in polylog space

Dicut Analysis: Graph theory, some 3-var. calculus, Why did rounding end up optimal?

 Stepping back: Suppose algorithm gets entire "incidence matrix" M (and only this info) (M_{ij} = fraction of constraints with X_i in jth place in constraint.)

 Stepping back: Suppose algorithm gets entire "incidence matrix" M (and only this info) (M_{ij} = fraction of constraints with X_i in jth place in constraint.)

How well can this algorithm perform?

Tautology: $\exists \Psi_1, \Psi_2$ with $val(\Psi_1) \ge \gamma, val(\Psi_2) \le \beta$ and $M(\Psi_1) = M(\Psi_2)$ iff algorithm can't solve (γ, β) -MAX CSP(f).

 Stepping back: Suppose algorithm gets entire "incidence matrix" M (and only this info) (M_{ij} = fraction of constraints with X_i in jth place in constraint.)

How well can this algorithm perform?

- Tautology: $\exists \Psi_1, \Psi_2$ with $val(\Psi_1) \ge \gamma, val(\Psi_2) \le \beta$ and $M(\Psi_1) = M(\Psi_2)$ iff algorithm can't solve (γ, β) -MAX CSP(f).
- Thm: Alg can be sketched in polylog space;
 - If Alg can't solve then no $o(\sqrt{n})$ -sketching alg

 Stepping back: Suppose algorithm gets entire "incidence matrix" M (and only this info) (M_{ij} = fraction of constraints with X_i in jth place in constraint.)

How well can this algorithm perform?

Tautology: $\exists \Psi_1, \Psi_2$ with $val(\Psi_1) \ge \gamma, val(\Psi_2) \le \beta$ and $M(\Psi_1) = M(\Psi_2)$ iff algorithm can't solve (γ, β) -MAX CSP(f).

Thm: - Alg can be sketched in polylog space;

- If Alg can't solve then no $o(\sqrt{n})$ -sketching alg
- Criterion is decidable in finite time.

July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

Decidability and Criterion (Some ideas)

Instance only needs to have kq variables.

• No instances: $val(\Psi) \leq \beta \Rightarrow val(\Lambda_{\Pi} (\Psi \circ \Pi)) \leq \beta$

• Constraints on first q variables captures Ψ

Yes instances: Might as well plant the good assignment!

• Use var $X_{i\sigma}$ for *i*th place var assigned $\sigma \in [q]$

- Criterion?
 - Constraints on kq vars \rightarrow Distribution on $[q]^k$
 - Sets $S_{\gamma} = \{\Psi \mid val(\Psi) \ge \gamma\}$ and $S_{N} = \{\Psi \mid val(\Psi) \le \beta\}$ are convex sets!
 - Sets capturing $M(\Psi)$ also convex (in \mathbb{R}^{kq})

Algorithm and lower bound (some ideas)

- If $\{M(\Psi) | \Psi \in S_Y\} \cap \{M(\Psi) | \Psi \in S_N\} = \emptyset$ then there exists a separating hyperplane.
 - Use separating hyperplane to define bias ... and get algorithm. (details omitted).
- If $\{M(\Psi) | \Psi \in S_Y\} \cap \{M(\Psi) | \Psi \in S_N\} \neq \emptyset$ then $\exists D_Y, D_N$ on $[q]^k$ with matching marginals.
 - Build a comm. Complexity problem around such a pair D_Y, D_N that extends Boolean Hidden Matching. "(D_Y, D_N)-RMD"
 - Extend the BHM lower bound to all (D_Y, D_N) -RMD (with matching marginals).
 - Use to prove streaming lower bound.

Open Questions

- Sketching = Streaming?
 - Extend sqrt lower bounds from sketching to streaming!
 - Challenge: Walk length algorithm!
- Sqrt = Linear?
 - Is there a dichotomy at linear space?
 - Challenge: Template-based algorithms!
 - Can Dicut approximation be improved with o(n) space?
- $\omega(n)$ -lower bounds? (Trivial: $O(n \log n) \dots$)

Thank You!

July 26, 2022 FODSI Sublinear: Streaming+Sketching CSPs

51 of 51