Streaming \& Sketching CSPs

Madhu Sudan

Harvard University

Based on joint works with Chi-Ning Chou, Alexander Golovnev, Noah Singer, Ameya Velingker and Santhoshini Velusamy.

This Talk

- CSPs (\& approximation \& streaming/sketching)
- Our results
- Some Proof Ideas

Constraint Satisfaction Problems (CSPs)

- Class of infinitely many problems.
$\operatorname{MaxCSP}(F)$
- Specified by q, k and family $F \subseteq\left\{f:[q]^{k} \rightarrow\{0,1\}\right\}$.
- Instance of $\operatorname{MaxCSP}(F): \Psi=\left(X_{1}, \ldots, X_{n} ; C_{1}, \ldots, C_{m}\right)$; Constraint $C_{j}(X)=f_{j}\left(X_{i_{1}(j)}, \ldots, X_{i_{k}(j)}\right) ; f_{j} \in F$
- opt $(\Psi) \equiv \max _{a \in[q]^{n}}\left\{\sum_{j} C_{j}(a)\right\} \frac{1}{m}$
- Examples:
- MaxCut $(F=\{\oplus\})$
- MaxDicut ($F=\{x \wedge \bar{y}\}$)
- Max 3SAT $(|F|=11)$, Max Exact 3SAT $(|F|=4)$, Max q-Colorability.

Constraint Satisfaction Problems (CSPs)

- "Special Case": Boolean MaxCSP (F) :
- $q=2$;
- Constraints $C=f\left(X_{1}, \overline{X_{2}}, \ldots, \overline{X_{k}}\right)$
- Constraints applied to literals.
- Warning: $\operatorname{MaxCSP}(F) \neq$ Boolean $\operatorname{MaxCSP}(F)$
- $\forall F \exists G$ s.t. Boolean $\operatorname{MaxCSP}(F)=\operatorname{MaxCSP}(\mathrm{G})$. (converse not true. MaxCut, MaxDicut ...)

Streaming \& Approximation

- Streaming input
- Streaming: $s(n)$-space algorithm - gets one constraint at a time.
- Sketching: Maintains sketch $S(\sigma)$ with $|S(\sigma)| \leq s(n)$; - Restriction: $(S(\sigma), S(\tau)) \rightarrow S(\sigma \circ \tau)$
- Space milestones: polylog, sqrt, or (nearly)linear.
- Approximations:
- Usual notion: α-approximation:
- Output v s.t. $\quad \alpha \cdot \operatorname{opt}(\Psi) \leq v \leq o p t(\Psi)$
- Refined notion: (γ, β)-distinguishability:
- Output Yes if $\operatorname{opt}(\Psi) \geq \gamma$, No if $\operatorname{opt}(\Psi) \leq \beta$
- Equivalence: $\alpha=\min _{\gamma} \max _{\beta} \beta / \gamma$

Trivial Approximations:

- $\tilde{O}(n)$-space, $1-o(1)$-approx.
- Maintain $\tilde{O}(n)$-constraints. Solve optimally on those using exponential time.
- $O(1)$-space, $\rho_{\min }$-approx.
- Defn: $\rho_{\min }(F):=\min _{\Psi}\left\{\operatorname{val}_{\Psi}\right\}$
- Notes: Usually $\rho_{\min }>0$ (unless $0 \in F$)
- For Boolean CSPs (on literals)
- $\rho_{\min }(f)=2^{-k} \cdot\left|f^{-1}(1)\right|$ ($=$ value of random assgmt).
- E.g. $\rho_{\text {min }}($ MaxCut $)=\frac{1}{2}$
- Key question: (When) can we do better than trivial?

Why study CSPs

- Contain some problems of direct interest
- Max Cut, Max Dicut, Max colorability
- Allow possibility of classification!
- Highlight general algorithms
- Norm approximations (already used)
- Local Exploration
- Crude snapshots
- Identify Phenomena:
- No $2^{\sqrt{\log n}}$-space algorithms?

Brief History

- 2011 Bertinoro W'shop (P. 45): "We know nothing +/-"
- 2015-19: Lower bounds for MaxCut [KKS,KKSV,KK]
- Kapralov-Krachun: $\frac{1}{2}+\epsilon$-approximation requires $\Omega(n)$-space (in n vertex graph) (streaming).
- 2017-20: Algorithms for Max DiCut, Max SAT
- Guruswami-Velingker-Velusamy: DiCut
- Chou-Golovnev-Velusamy: DiCut, Max SAT
- 2020: Sketching Classification
- Chou-Golovnev-Velusamy: Classify all Boolean MaxCSP with $k=q=2$

Our Results

- [CGSV21]:
- Dichotomy for sketching (polylog vs. sqrt)
- Polylog space algorithms for infinitely many CSPs
- $\Omega(\sqrt{n})$ space lower bounds for broad classes ("one-wise ind.", "padded one-wise ind.").
- [CGSVV 21]: Linear space lower bounds for subclass of "one-wise-ind".
- Pins approximability of all MaxCSP (F) to within q-factor (trivial alg vs. linear space).
[SSV21]: No sublinear algorithms for "Ordering CSPs"

Proof Ideas

Max Cut Lower Bound

- Hard distributions:
- YES: Random union of matchings crossing hidden bipartition
- NO: Random union of matchings.
- Analysis:
- Divide long stream into O(1) smaller substreams - each substream=matching.
- Algorithm learns nothing in any single substream \Leftarrow Boolean Hidden Matching Lower Bound [GKKRW]
- Hybrid argument to combine $\mathrm{O}(1)$ substreams.
- Yields $\Omega(\sqrt{n})$ space lower bound to beat trivial approximation.
- $\Omega(n)$ lower bound more complex - omitted.

Streaming MaxCut

Streaming MaxCut

0

0

00

Streaming MaxCut

Streaming MaxCut

Streaming MaxCut

0

0

0

Streaming MaxCut

Streaming MaxCut

0

0

0

0

0

Streaming MaxCut

0
0

00

Streaming MaxCut

0

Streaming MaxCut

0
 0

0

0

0

0

| O OODSI Sublinear: Streaming+Sketching CSPs | O |
| :---: | :---: | :---: |
| July 26,2022 | O of 51 |

Streaming MaxCut

Streaming MaxCut

0

0

0

0

Streaming MaxCut

Streaming MaxCut

Streaming MaxCut

Streaming MaxCut

0
 0

O

0

0

0

July 26, 2022

Streaming MaxCut

Streaming MaxCut

0

Streaming MaxCut

0

0
0
0
0

Streaming MaxCut

Streaming MaxCut

0
0

0

Streaming MaxCut

Streaming MaxCut

0

0
0

0
0

Streaming MaxCut

Streaming MaxCut

0
\circ

0

0

Streaming MaxCut

Streaming MaxCut

$0 \quad 0$

0 O
0

Streaming MaxCut

Max Cut Lower Bound

- Hard distributions:
- YES: Random union of matchings crossing hidden bipartition
- NO: Random union of matchings.
- Analysis:
- Divide long stream into O(1) smaller substreams - each substream=matching.
- Algorithm learns nothing in any single substream \Leftarrow Boolean Hidden Matching Lower Bound [GKKRW]
- Hybrid argument to combine $\mathrm{O}(1)$ substreams.
- Yields $\Omega(\sqrt{n})$ space lower bound to beat trivial approximation.
- $\Omega(n)$ lower bound more complex - omitted.

Boolean Hidden Matching Problem

- One-way communication problem.
- Alice gets a random cut on vertex set [n].
- Bob gets a random matching on [n] of size αn along with a $0 / 1$ label on each edge.
- NO: 0/1 labels random
- YES: $1 \Rightarrow$ edge crosses cut, $0 \Rightarrow$ doesn't cross.
- Challenge: Alice sends message to Bob, Bob to distinguish YES from NO.
- Lower bound theorem [GKKRW]: $\Omega(\sqrt{n})$ communication required.

GVV+CGV Algorithms for Max DiCut

- Define $\operatorname{Bias}(v) \stackrel{\text { def }}{=} \operatorname{indeg}(v)-\operatorname{outdeg}(v)$
$\operatorname{Bias}(G) \stackrel{\operatorname{def}}{=} \frac{1}{2} \sum_{v}|\operatorname{Bias}(v)|$
Claim 1 [GVV]:
- Bias can be estimated in polylog space. (ℓ_{1}-norm estimation)
- $\operatorname{Dicut}(G) \leq \frac{\operatorname{Bias}(G)+m}{2}$
- $\operatorname{Bias}(G) \leq \operatorname{Dicut}(G)$ (Greedy rounding)
- Output: $\max \left\{\frac{m}{4}, \operatorname{Bias}(G)\right\} \Rightarrow 2 / 5$-approx.
- Claim 2 [CGV]: $\operatorname{Bias}(\mathrm{G}) \leq \frac{m}{3} \Rightarrow \operatorname{Dicut}(G) \geq \frac{m}{4}+\frac{\operatorname{Bias}(G)^{2}}{4(m-2 \operatorname{Bias}(G))}$ (Rand. Rounding w.p. $\left.\frac{1}{2}-\frac{\operatorname{Bias}(G)}{2(m-2 \operatorname{Bias}(G))}\right) \Rightarrow 4 / 9$-approx.

Generalizing to other CSPs: Challenges

- What is bias, say for $f(x, y, z)=x \wedge(y \oplus z)$
- E.g.: $x \wedge\left(a_{1} \oplus a_{2}\right), a_{3} \wedge(x \oplus y), y \wedge\left(x \oplus a_{4}\right)$
- Why is ℓ_{1}-estimation useful in Dicut approximation
- $\ell_{1}\left(x_{1}, \ldots, x_{n}\right)=\max _{a_{1} \ldots a_{n} \in\{-1,1\}}\left\{\sum_{i} a_{i} x_{i}\right\}$
- Useful generalization: $\left||M|_{\{1, \infty\}}:=\max _{a \in[q]^{n}}\left\{\sum_{i} M_{i, a(i)}\right\}\right.$
- Computable in polylog space
- Dicut Analysis: Graph theory, some 3-var. calculus, Why did rounding end up optimal?

Dichotomy for Sketching

- Stepping back: Suppose algorithm gets entire "incidence matrix" M (and only this info)
($M_{i j}=$ fraction of constraints with X_{i} in j th place in constraint.)

- How well can this $\frac{\beta}{\text { algorithm perform? }}$

Dichotomy for Sketching

- Stepping back: Suppose algorithm gets entire "incidence matrix" M (and only this info) ($M_{i j}=$ fraction of constraints with X_{i} in j th place in constraint.)
- How well can this algorithm perform?
- Tautology: $\exists \Psi_{1}, \Psi_{2}$ with $\operatorname{val}\left(\Psi_{1}\right) \geq \gamma, \operatorname{val}\left(\Psi_{2}\right) \leq \beta$ and $M\left(\Psi_{1}\right)=M\left(\Psi_{2}\right)$ iff algorithm can't solve (γ, β) MAX CSP(f).

Dichotomy for Sketching

- Stepping back: Suppose algorithm gets entire "incidence matrix" M (and only this info) ($M_{i j}=$ fraction of constraints with X_{i} in j th place in constraint.)
- How well can this algorithm perform?
- Tautology: $\exists \Psi_{1}, \Psi_{2}$ with $\operatorname{val}\left(\Psi_{1}\right) \geq \gamma, \operatorname{val}\left(\Psi_{2}\right) \leq \beta$ and $M\left(\Psi_{1}\right)=M\left(\Psi_{2}\right)$ iff algorithm can't solve (γ, β) MAX CSP(f).
- Thm: - Alg can be sketched in polylog space;
- If Alg can't solve then no $o(\sqrt{n})$-sketching alg

Dichotomy for Sketching

- Stepping back: Suppose algorithm gets entire "incidence matrix" M (and only this info) ($M_{i j}=$ fraction of constraints with X_{i} in j th place in constraint.)
- How well can this algorithm perform?
- Tautology: $\exists \Psi_{1}, \Psi_{2}$ with $\operatorname{val}\left(\Psi_{1}\right) \geq \gamma, \operatorname{val}\left(\Psi_{2}\right) \leq \beta$ and $M\left(\Psi_{1}\right)=M\left(\Psi_{2}\right)$ iff algorithm can't solve (γ, β) MAX CSP(f).
- Thm: - Alg can be sketched in polylog space;
- If Alg can't solve then no o(\sqrt{n})-sketching alg
- Criterion is decidable in finite time.

Decidability and Criterion (Some ideas)

- Instance only needs to have $k q$ variables.
- No instances: $\operatorname{val}(\Psi) \leq \beta \Rightarrow \operatorname{val}\left(\wedge_{\Pi}(\Psi \circ \Pi)\right) \leq \beta$
- Constraints on first q variables captures Ψ
- Yes instances: Might as well plant the good assignment!
- Use var $X_{i \sigma}$ for i th place var assigned $\sigma \in[q]$
- Criterion?
- Constraints on $k q$ vars \rightarrow Distribution on $[q]^{k}$
- Sets $S_{Y}=\{\Psi \mid \operatorname{val}(\Psi) \geq \gamma\}$ and $S_{N}=\{\Psi \mid \operatorname{val}(\Psi) \leq \beta\}$ are convex sets!
- Sets capturing $M(\Psi)$ also convex (in $\mathbb{R}^{k q}$)

Algorithm and lower bound (some ideas)

- If $\left\{M(\Psi) \mid \Psi \in S_{Y}\right\} \cap\left\{M(\Psi) \mid \Psi \in S_{N}\right\}=\varnothing$ then there exists a separating hyperplane.
- Use separating hyperplane to define bias ... and get algorithm. (details omitted).
- If $\left\{M(\Psi) \mid \Psi \in S_{Y}\right\} \cap\left\{M(\Psi) \mid \Psi \in S_{N}\right\} \neq \varnothing$ then $\exists D_{Y}, D_{N}$ on $[q]^{k}$ with matching marginals.
- Build a comm. Complexity problem around such a pair D_{Y}, D_{N} that extends Boolean Hidden Matching. " $\left(D_{Y}, D_{N}\right)$-RMD"
- Extend the BHM lower bound to all (D_{Y}, D_{N})RMD (with matching marginals).
- Use to prove streafning lower bound.

Open Questions

- Sketching = Streaming?
- Extend sqrt lower bounds from sketching to streaming!
- Challenge: Walk length algorithm!
- Sqrt = Linear?
- Is there a dichotomy at linear space?
- Challenge: Template-based algorithms!
- Can Dicut approximation be improved with o(n) space?
- $\omega(n)$-lower bounds? (Trivial: $O(n \log n) \ldots$)

Thank You!

