Streaming & Sketching CSPs

Madhu Sudan
Harvard University

Based on joint works with Chi-Ning Chou, Alexander Golovnev, Noah Singer, Ameya Velingker and Santhoshini Velusamy.
This Talk

- CSPs (& approximation & streaming/sketching)
- Our results
- Some Proof Ideas
Constraint Satisfaction Problems (CSPs)

- Class of infinitely many problems.

- Specified by q, k and family $F \subseteq \{f : [q]^k \rightarrow \{0,1\}\}$.

- Instance of $\text{MaxCSP}(F)$: $\Psi = (X_1, ..., X_n; C_1, ..., C_m)$; Constraint $C_j(X) = f_j(X_{i_1(j)}, ..., X_{i_k(j)})$; $f_j \in F$

- $\text{opt}(\Psi) \equiv \max_{a \in [q]^n} \{\sum_j C_j(a)\}$

- Examples:
 - MaxCut ($F = \{\oplus\}$)
 - MaxDicut ($F = \{x \land \overline{y}\}$)
 - Max 3SAT ($|F| = 11$), Max Exact 3SAT ($|F| = 4$), $\text{Max q-Colorability}$.
Constraint Satisfaction Problems (CSPs)

“Special Case”: Boolean MaxCSP(F):

- $q = 2$;
- Constraints $c = f(X_1, \overline{X_2}, \ldots, \overline{X_k})$
 - Constraints applied to literals.

Warning: MaxCSP(F) \neq Boolean MaxCSP(F)

$\forall F \exists G$ s.t. Boolean MaxCSP(F) = MaxCSP(G).

(converse not true. MaxCut, MaxDicut ...)

July 26, 2022

FODSI Sublinear: Streaming+Sketching CSPs
Streaming & Approximation

- **Streaming input**
 - **Streaming:** $s(n)$-space algorithm – gets one constraint at a time.
 - **Sketching:** Maintains sketch $S(\sigma)$ with $|S(\sigma)| \leq s(n)$;
 - **Restriction:** $(S(\sigma), S(\tau)) \rightarrow S(\sigma \circ \tau)$
 - **Space milestones:** polylog, sqrt, or (nearly-)linear.

- **Approximations**:
 - **Usual notion:** α-approximation:
 - Output v s.t. $\alpha \cdot \text{opt}(\Psi) \leq v \leq \text{opt}(\Psi)$
 - **Refined notion:** (γ, β)-distinguishability:
 - Output Yes if $\text{opt}(\Psi) \geq \gamma$, No if $\text{opt}(\Psi) \leq \beta$
 - **Equivalence:** $\alpha = \min_{\gamma, \beta} \frac{\beta}{\gamma}$
Trivial Approximations:

- $\tilde{O}(n)$-space, $1 - o(1)$-approx.
 - Maintain $\tilde{O}(n)$-constraints. Solve optimally on those using exponential time.

- $O(1)$-space, ρ_{min}-approx.
 - Defn: $\rho_{\text{min}}(F) := \min_\Psi \{\text{val}_\Psi\}$
 - Notes: Usually $\rho_{\text{min}} > 0$ (unless $0 \in F$)
 - For Boolean CSPs (on literals)
 - $\rho_{\text{min}}(f) = 2^{-k} \cdot |f^{-1}(1)|$ (= value of random assgmt).
 - E.g. $\rho_{\text{min}}(\text{MaxCut}) = \frac{1}{2}$
 - Key question: (When) can we do better than trivial?
Why study CSPs

- Contain some problems of direct interest
 - Max Cut, Max Dicut, Max colorability
- Allow possibility of classification!
- Highlight general algorithms
 - Norm approximations (already used)
 - Local Exploration
 - Crude snapshots
- Identify Phenomena:
 - No $2^{\sqrt{\log n}}$-space algorithms?
Brief History

- 2011 Bertinoro W’shop (P. 45): “We know nothing +/-”
- 2015-19: Lower bounds for MaxCut [KKS,KKSV,KK]
 - Kapralov-Krachun: $\frac{1}{2} + \epsilon$-approximation requires $\Omega(n)$-space (in n vertex graph) (streaming).
- 2017-20: Algorithms for Max DiCut, Max SAT
 - Guruswami-Velingker-Velusamy: DiCut
 - Chou-Golovnev-Velusamy: DiCut, Max SAT
- 2020: Sketching Classification
 - Chou-Golovnev-Velusamy: Classify all Boolean MaxCSP with $k = q = 2$
Our Results

- **[CGSV21]:**
 - Dichotomy for sketching (polylog vs. sqrt)
 - Polylog space algorithms for infinitely many CSPs
 - $\Omega(\sqrt{n})$ space lower bounds for broad classes ("one-wise ind.", "padded one-wise ind.").

- **[CGSVV 21]:** Linear space lower bounds for subclass of "one-wise-ind".
 - Pins approximability of all MaxCSP(F) to within q-factor (trivial alg vs. linear space).

- **[SSV21]:** No sublinear algorithms for "Ordering CSPs"
Proof Ideas
Max Cut Lower Bound

- **Hard distributions:**
 - YES: Random union of matchings crossing hidden bipartition
 - NO: Random union of matchings.

- **Analysis:**
 - Divide long stream into $O(1)$ smaller substreams – each substream = matching.
 - Algorithm learns nothing in any single substream \Leftarrow Boolean Hidden Matching Lower Bound [GKKRW]
 - Hybrid argument to combine $O(1)$ substreams.
 - Yields $\Omega(\sqrt{n})$ space lower bound to beat trivial approximation.
 - $\Omega(n)$ lower bound more complex – omitted.
Streaming MaxCut

[Diagram showing a graph with nodes and an edge between two nodes]
Streaming MaxCut
Max Cut Lower Bound

- **Hard distributions:**
 - YES: Random union of matchings crossing hidden bipartition
 - NO: Random union of matchings.

- **Analysis:**
 - Divide long stream into $O(1)$ smaller substreams – each substream = matching.
 - Algorithm learns nothing in any single substream \iff Boolean Hidden Matching Lower Bound [GKKRW]
 - Hybrid argument to combine $O(1)$ substreams.
 - Yields $\Omega(\sqrt{n})$ space lower bound to beat trivial approximation.

- $\Omega(n)$ lower bound more complex – omitted.
Boolean Hidden Matching Problem

- One-way communication problem.
- Alice gets a random cut on vertex set \([n]\).
- Bob gets a random matching on \([n]\) of size \(\alpha n\) along with a 0/1 label on each edge.
 - **NO:** 0/1 labels random
 - **YES:** 1 \(\Rightarrow\) edge crosses cut, 0 \(\Rightarrow\) doesn’t cross.
- Challenge: Alice sends message to Bob, Bob to distinguish YES from NO.
- Lower bound theorem [GKKRW]: \(\Omega(\sqrt{n})\) communication required.
GVV+CGV Algorithms for Max DiCut

- Define $\text{Bias}(v) \overset{\text{def}}{=} \text{indeg}(v) - \text{outdeg}(v)$
- $\text{Bias}(G) \overset{\text{def}}{=} \frac{1}{2} \sum_v |\text{Bias}(v)|$

Claim 1 [GVV]:
- Bias can be estimated in polylog space. (ℓ_1-norm estimation)
- $\text{Dicut}(G) \leq \frac{\text{Bias}(G) + m}{2}$
- $\text{Bias}(G) \leq \text{Dicut}(G)$ (Greedy rounding)
- **Output:** $\max\left\{\frac{m}{4}, \text{Bias}(G)\right\} \Rightarrow 2/5$-approx.

Claim 2 [CGV]: $\text{Bias}(G) \leq \frac{m}{3} \Rightarrow \text{Dicut}(G) \geq \frac{m}{4} + \frac{\text{Bias}(G)^2}{4(m - 2\text{Bias}(G))}$
(Rand. Rounding w.p. $\frac{1}{2} - \frac{\text{Bias}(G)}{2(m - 2\text{Bias}(G))}$) $\Rightarrow 4/9$-approx.
Generalizing to other CSPs: Challenges

- What is bias, say for \(f(x, y, z) = x \land (y \oplus z) \)
 - E.g.: \(x \land (a_1 \oplus a_2), a_3 \land (x \oplus y), y \land (x \oplus a_4) \)
- Why is \(\ell_1 \)-estimation useful in Dicut approximation
 - \(\ell_1(x_1, ..., x_n) = \max_{a_1...a_n \in \{-1,1\}} \{\sum_i a_i x_i\} \)
 - Useful generalization: \(||M||_{1,\infty} := \max_{a \in [q]^n} \{\sum_i M_{i,a(i)}\} \)
 - Computable in polylog space
- Dicut Analysis: Graph theory, some 3-var. calculus, Why did rounding end up optimal?
Dichotomy for Sketching

- Stepping back: Suppose algorithm gets entire “incidence matrix” M (and only this info)
 $M_{ij} = \text{fraction of constraints with } X_i \text{ in } j\text{th place in constraint.}$

- How well can this algorithm perform?
Dichotomy for Sketching

- Stepping back: Suppose algorithm gets entire “incidence matrix” M (and only this info)

 $(M_{ij} = \text{fraction of constraints with } X_i \text{ in } j\text{th place in constraint})$

- How well can this algorithm perform?

- Tautology: $\exists \Psi_1, \Psi_2$ with $\text{val}(\Psi_1) \geq \gamma, \text{val}(\Psi_2) \leq \beta$

 and $M(\Psi_1) = M(\Psi_2)$ iff algorithm can’t solve (γ, β)-MAX CSP(f).
Dichotomy for Sketching

- Stepping back: Suppose algorithm gets entire “incidence matrix” M (and only this info)
 \[(M_{ij} = \text{fraction of constraints with } X_i \text{ in } j\text{th place in constraint.})\]

- How well can this algorithm perform?

- Tautology: \(\exists \Psi_1, \Psi_2\) with \(\text{val}(\Psi_1) \geq \gamma, \text{val}(\Psi_2) \leq \beta\) and \(M(\Psi_1) = M(\Psi_2)\) iff algorithm can’t solve \((\gamma, \beta)\)-MAX CSP(f).

- Thm: - Alg can be sketched in polylog space;
 - If Alg can’t solve then no \(o(\sqrt{n})\)-sketching alg
Dichotomy for Sketching

- Stepping back: Suppose algorithm gets entire “incidence matrix” M (and only this info)

 \[M_{ij} = \text{fraction of constraints with } X_i \text{ in } j\text{th place in constraint.} \]

- How well can this algorithm perform?

- Tautology: \(\exists \Psi_1, \Psi_2 \) with \(\text{val}(\Psi_1) \geq \gamma, \text{val}(\Psi_2) \leq \beta \) and \(M(\Psi_1) = M(\Psi_2) \) iff algorithm can’t solve \((\gamma, \beta)\)-MAX CSP(f).

- Thm: - Alg can be sketched in polylog space;
 - If Alg can’t solve then no \(o(\sqrt{n}) \)-sketching alg
 - Criterion is decidable in finite time.
Decidability and Criterion (Some ideas)

- Instance only needs to have kq variables.
 - No instances: $\text{val}(\Psi) \leq \beta \Rightarrow \text{val}(\Lambda_{\Pi} (\Psi \circ \Pi)) \leq \beta$
 - Constraints on first q variables captures Ψ
 - Yes instances: Might as well plant the good assignment!
 - Use var $X_{i\sigma}$ for ith place var assigned $\sigma \in [q]$
- Criterion?
 - Constraints on kq vars \rightarrow Distribution on $[q]^k$
 - Sets $S_Y = \{\Psi \mid \text{val}(\Psi) \geq \gamma\}$ and $S_N = \{\Psi \mid \text{val}(\Psi) \leq \beta\}$ are convex sets!
 - Sets capturing $M(\Psi)$ also convex (in \mathbb{R}^{kq})
Algorithm and lower bound (some ideas)

- If \(\{M(\Psi) | \Psi \in S_Y\} \cap \{M(\Psi) | \Psi \in S_N\} = \emptyset \) then there exists a separating hyperplane.
 - Use separating hyperplane to define bias ... and get algorithm. (details omitted).
- If \(\{M(\Psi) | \Psi \in S_Y\} \cap \{M(\Psi) | \Psi \in S_N\} \neq \emptyset \) then \(\exists D_Y, D_N \)
on \([q]^k\) with matching marginals.
 - Build a comm. Complexity problem around such a pair \(D_Y, D_N \) that extends Boolean Hidden Matching. “\((D_Y, D_N)\)-RMD”
 - Extend the BHM lower bound to all \((D_Y, D_N)\)-RMD (with matching marginals).
 - Use to prove streaming lower bound.
Open Questions

- Sketching = Streaming?
 - Extend sqrt lower bounds from sketching to streaming!
 - Challenge: Walk length algorithm!

- Sqrt = Linear?
 - Is there a dichotomy at linear space?
 - Challenge: Template-based algorithms!
 - Can Dicut approximation be improved with o(n) space?
 - $\omega(n)$-lower bounds? (Trivial: $O(n \log n)$...)
Thank You!