

Is societal knowledge robust?

 Why ask this question?
 Builds on error-prone processes

 Collecting Data
 Analyzing it
 Combining results

 Last is especially problematic/interesting: Knowledge is cumulative!!
 Accumulation can be very bad for errors!!!!!

 There must exist error-correcting processes
 What are they? How do they work? How well do they work?

Lebesgue’s Mistake
 In 1904 Lebesgue proved the following theorem:

“A projection of a measurable set is measurable”

Lebesgue’s Mistake
 According to Google Scholar the paper has 303 citations.

Lebesgue’s Mistake
 According to Google Scholar the paper has 303 citations.
 Some citations prior to 1917.

Lebesgue’s Mistake
 According to Google Scholar the paper has 303 citations.
 Some citations are from before 1917.
 In 1917 Suslin discovered a counterexample:

“There exists a projection of measurable set which is not mesurable”
 Happy ending: The field of “Descriptive set theory” was born.
 Did the mistake propagate?

Today
Question

Can we guarantee that the effects caused by a single error do not propagate?

Cumulative Knowledge Process
 In the paper we model the process of accumulating knowledge.
 Main properties:

 New “units of knowledge” build upon previous units.
 Errors are sometimes introduced and may propagate forward.
 Errors can be checked and removed from the process.

 We study structural properties of the process.

The Model

Representation of Knowledge
 Ideally: Knowledge is stored as Directed Acyclic Graph (DAG).

 Vertices represent units of knowledge
 Edges represent dependence or “inherited knowledge”.
 E.g. a paper cites several papers.

 Would require a proper model of knowledge clustering.
 Simplified notion: Knowledge is represented as a tree.

The Model
 The Knowledge DAG Tree: In the Cumulative Knowledge Process

(CKP) knowledge units are modeled as a tree.
 A node represents a single “unit of knowledge” and edges represent

the relation of “building upon existing knowledge”
 Each node has:

 A hidden state conditionally true(CT)/conditionally false(CF)
 A public state proclaimed true(PT)/proclaimed false(PF)
 A node is considered to hold true knowledge

if all ancestors are CT

CT

CT

CT

CT

CT

CT

CTCF

CF

CF

Accumulating Knowledge
 At each time 𝑡 ≥ 0, we have a knowledge tree 𝑇𝑡 with associated labels.
 At time 𝑡 + 1 a new node is added to the tree, by choosing a random

proclaimed true (PT) parent.
 Parents are chosen according to the preferential attachment model.

 The more PT children a node has the more likely it is to generate new knowledge.
 A new node is always proclaimed true

PT

PT

PT PF

PT

PF PF PF PF

PT

PT PF

PF

PTPT
New knowledge

PT

Injection of Errors
 Recall: nodes also have hidden states.
 The hidden label of a new node is determined randomly:

 Parameter 𝜀: with probability 𝜀 the new node is CF and otherwise CT.

CT

CF

CT CF

CT

CF CF CF CF

CT

CT CF

CF

CTCF

?

Injection of Errors
 Recall: nodes also have hidden states.
 The hidden label of a new node is determined randomly:

 Parameter 𝜀: with probability 𝜀 the new node is CF and otherwise CT.

CT

CF

CT CF

CT

CF CF CF CF

CT

CT CF

CF

CTCF

CF

Aside: Probabilistic Models

 Quote from unknown sourc𝑒∗

 “All models are wrong. Some are useful”

Checking for Errors
 Checks may be performed whenever a new node is added.

 Parameter 𝑝: a node preformed a check with probability 𝑝.

 Checks are performed by ascending the tree.
 Parameter 𝑘: the number of levels to be checked.

PT

PF

PT PF

PT

PF PF PF PF

PT

PT PF

PF

PTPT

PT

PT

PT

This node is CF

New node

𝑘 = 2

Checking for Errors
 Checks may be performed whenever a new node is added.

 Parameter 𝑝: a node preformed a check with probability 𝑝.

 Checks are performed by ascending the tree.
 Parameter 𝑘: the number of levels to be checked.

 If a CF or PF node is encountered, the public state of the entire path changes to
proclaimed false.

PT

PF

PT PF

PT

PF PF PF PF

PT

PT PF

PF

PTPT

PF

PF

PF

This node is CF

New node

𝑘 = 2

The Model - Summary
 Tree: knowledge is represented by a tree.
 Preferential attachment: nodes of high degree are more influential.
 Errors: errors are sometimes introduced when new knowledge is created
 Checks: checks are sometimes preformed when new knowledge is

introduced.
 Error correction: when a node is verified to be faulty, the error is

announced and the node is effectively eliminated.

With the parameters 𝜀, 𝑝, and 𝑘 the model is called the 𝜺, 𝒑, 𝒌 − 𝑪𝑲𝑷.

Results

Error Effects

 Effects caused by a single error: subtree rooted at a CF node.

Question
Can we guarantee that the effects caused by a single error do not propagate?

PT

PT

PT PF

PT

PF PF PF PF

PT

PT PF

PF

PTPT

This node is CF

Error Effects

 Effects caused by a single error: subtree rooted at a CF node.
 Elimination of errors (observation): if, at some time, all nodes in a

subtree are marked PF, the subtree is effectively eliminated.

Question
Can we guarantee that the effects caused by a single error do not propagate?

PF

PF

PF PF

PF

PF PF PF PF

PF

PF PF

PF

PFPF

This node is CF

Error Effects
Question

Can we guarantee that the effects caused by a single error do not propagate?

PF

PF

PF PF

PF

PF PF PF PF

PF

PF PF

PF

PFPF

This node is CF

Definition
• If every subtree rooted at a CF node is eliminated with probability 1, we

say that the error effects are completely eliminated.
• Otherwise, the error effects survive with positive probability.

First Result – Depth Matters

 Main idea: couple the CKP with a branching process.

Theorem 1
If 𝒌 = 𝟐, then for any 𝒑 < 𝟏, the error effects in the 𝜺, 𝒑, 𝟐 − 𝑪𝑲𝑷 survives
with positive probability.

PT

PTPTPT

This node is False

First Result – Depth Matters

 Main idea: couple the CKP with a branching process.
 We show that when 𝑘 = 2, by the time an erroneous node is proclaimed

false it will effectively create many new components.

Theorem 1
If 𝒌 = 𝟐, then for any 𝒑 < 𝟏, the error effects in the 𝜺, 𝒑, 𝟐 − 𝑪𝑲𝑷 survive
with positive probability.

PF

PTPTPT

First Result – Depth Matters
Theorem 1
If 𝒌 = 𝟐, then for any 𝒑 < 𝟏, the error effects in the 𝜺, 𝒑, 𝟐 − 𝑪𝑲𝑷 survive
with positive probability.

Conclusion:
To guarantee that error effects are completely eliminated shallow checks are
not enough!

Another Result :
If 42 ,

than ke= ↓

is not enough to eliminate enter

effects .

(t = 0 ; roof is CF)

pl ...
large I means

Ote

Analysis
-

Some potential function

=> grows in expectation = press hies

for ever
(A kaves)

+ # connected components)

A Shrinks in expectation - process dies

: exponential potential in depth

Second Result– Checking Matters
Theorem 2
For any 𝒌 ≥ 𝟒, and 𝜺 < 1, there exists 𝑝0 ∈ (0,1) such that:
• If 𝑝 > 𝑝0 the error effects in the 𝜺, 𝒑, 𝒌 − 𝑪𝑲𝑷 are completely eliminated.
• If 𝑝 < 𝑝0 the error effects in the 𝜺, 𝒑, 𝒌 − 𝑪𝑲𝑷 survive with positive

probability.

Conclusion:
When the checking procedure is not too shallow, there is a minimal amount
of effort to invest in checking to guarantee the elimination of error effects.

Second Result– Main Ideas
 Proof of Theorem 2 is based on a (sub\super-)martingale analysis.
 We consider some observables in the process and identify regimes in

which they increase or decrease in expectation.
 Examples:

 Number of proclaimed true leaves in the tree.
 Distribution of depths in proclaimed true subtree.

PTPTPTPTPTPT

PTPTPTPT

PT

Further Results
 With a refined analysis we also consider other structural properties.
 When the error effect survives:

 Identify parameters which ensure that false components are sublinear.
 Also control the size of the components.

 When the error effect is completely eliminated:
 Identify parameters which also ensure that proportion of false nodes in

the tree is always at the noise level.

Future Directions
 The mysterious case of 𝒌 = 𝟑:

 Can the error effect be eliminated when only preforming depth 3 checks?
 Phase transitions:

 Determine the value of the critical probability 𝑝0.
 More general models:

 Can similar results be obtained for DAGS, instead of tree?
 Will require to define an appropriate preferential attachment model on

DAGs, which allows “similar knowledge” units to cluster.

Thank you!

