


Is societal knowledge robust?

 Why ask this question?
 Builds on error-prone processes

 Collecting Data
 Analyzing it
 Combining results

 Last is especially problematic/interesting: Knowledge is cumulative!!
 Accumulation can be very bad for errors!!!!!

 There must exist error-correcting processes
 What are they? How do they work? How well do they work?



Lebesgue’s Mistake
 In 1904 Lebesgue proved the following theorem:

“A projection of a measurable set is measurable”
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Lebesgue’s Mistake
 According to Google Scholar the paper has 303 citations.
 Some citations are from before 1917.
 In 1917 Suslin discovered a counterexample: 

“There exists a projection of measurable set which is not mesurable”
 Happy ending: The field of “Descriptive set theory” was born.
 Did the mistake propagate?



Today
Question

Can we guarantee that the effects caused by a single error do not propagate?



Cumulative Knowledge Process
 In the paper we model the process of accumulating knowledge.
 Main properties:

 New “units of knowledge” build upon previous units.
 Errors are sometimes introduced and may propagate forward.
 Errors can be checked and removed from the process.

 We study structural properties of the process.



The Model



Representation of Knowledge
 Ideally: Knowledge is stored as Directed Acyclic Graph (DAG). 

 Vertices represent units of knowledge
 Edges represent dependence or “inherited knowledge”. 
 E.g. a paper cites several papers.

 Would require a proper model of knowledge clustering.
 Simplified notion: Knowledge is represented as a tree.



The Model 
 The Knowledge DAG Tree: In the Cumulative Knowledge Process 

(CKP) knowledge units are modeled as a tree. 
 A node represents a single “unit of knowledge” and edges represent 

the relation of “building upon existing knowledge”
 Each node has:

 A hidden state conditionally true(CT)/conditionally false(CF)
 A public state proclaimed true(PT)/proclaimed false(PF)
 A node is considered to hold true knowledge 

if all ancestors are CT
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Accumulating Knowledge 
 At each time 𝑡 ≥ 0, we have a knowledge tree 𝑇𝑡 with associated labels.
 At time  𝑡 + 1 a new node is added to the tree, by choosing a random 

proclaimed true (PT) parent.
 Parents are chosen according to the preferential attachment model.

 The more PT children a node has the more likely it is to generate new knowledge.
 A new node is always proclaimed true
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Injection of Errors
 Recall: nodes also have hidden states.
 The hidden label of a new node is determined randomly:

 Parameter 𝜀: with probability 𝜀 the new node is CF and otherwise CT.
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Injection of Errors
 Recall: nodes also have hidden states.
 The hidden label of a new node is determined randomly:

 Parameter 𝜀: with probability 𝜀 the new node is CF and otherwise CT.
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Aside: Probabilistic Models

 Quote from unknown sourc𝑒∗

 “All models are wrong. Some are useful”



Checking for Errors
 Checks may be performed whenever a new node is added.

 Parameter 𝑝: a node preformed a check with probability 𝑝.

 Checks are performed by ascending the tree.
 Parameter 𝑘: the number of levels to be checked.
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Checking for Errors
 Checks may be performed whenever a new node is added.

 Parameter 𝑝: a node preformed a check with probability 𝑝.

 Checks are performed by ascending the tree.
 Parameter 𝑘: the number of levels to be checked.

 If a CF or PF node is encountered, the public state of the entire path changes to 
proclaimed false.
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The Model - Summary
 Tree: knowledge is represented by a tree.
 Preferential attachment: nodes of high degree are more influential.
 Errors: errors are sometimes introduced when new knowledge is created
 Checks: checks are sometimes preformed when new knowledge is 

introduced. 
 Error correction: when a node is verified to be faulty, the error is 

announced and the node is effectively eliminated.

With the parameters 𝜀, 𝑝, and 𝑘 the model is called the 𝜺, 𝒑, 𝒌 − 𝑪𝑲𝑷.



Results



Error Effects

 Effects caused by a single error: subtree rooted at a CF node.

Question
Can we guarantee that the effects caused by a single error do not propagate?
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Error Effects

 Effects caused by a single error: subtree rooted at a CF node.
 Elimination of errors (observation): if, at some time, all nodes in a 

subtree are marked PF, the subtree is effectively eliminated.

Question
Can we guarantee that the effects caused by a single error do not propagate?
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Error Effects
Question

Can we guarantee that the effects caused by a single error do not propagate?
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Definition
• If every subtree rooted at a CF node is eliminated with probability 1, we 

say that the error effects are completely eliminated.
• Otherwise, the error effects survive with positive probability.



First Result – Depth Matters

 Main idea: couple the CKP with a branching process.

Theorem 1
If 𝒌 = 𝟐, then for any 𝒑 < 𝟏, the error effects in the 𝜺, 𝒑, 𝟐 − 𝑪𝑲𝑷 survives 
with positive probability.
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First Result – Depth Matters

 Main idea: couple the CKP with a branching process.
 We show that when 𝑘 = 2, by the time an erroneous node is proclaimed 

false it will effectively create many new components.

Theorem 1
If 𝒌 = 𝟐, then for any 𝒑 < 𝟏, the error effects in the 𝜺, 𝒑, 𝟐 − 𝑪𝑲𝑷 survive 
with positive probability.
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First Result – Depth Matters
Theorem 1
If 𝒌 = 𝟐, then for any 𝒑 < 𝟏, the error effects in the 𝜺, 𝒑, 𝟐 − 𝑪𝑲𝑷 survive 
with positive probability.

Conclusion:
To guarantee that error effects are completely eliminated shallow checks are 
not enough! 
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Analysis
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Second Result– Checking Matters
Theorem 2
For any 𝒌 ≥ 𝟒, and 𝜺 < 1, there exists 𝑝0 ∈ (0,1) such that:
• If 𝑝 > 𝑝0 the error effects in the 𝜺, 𝒑, 𝒌 − 𝑪𝑲𝑷 are completely eliminated.
• If 𝑝 < 𝑝0 the error effects in the 𝜺, 𝒑, 𝒌 − 𝑪𝑲𝑷 survive with positive 

probability.

Conclusion:
When the checking procedure is not too shallow, there is a minimal amount 
of effort to invest in checking to guarantee the elimination of error effects.



Second Result– Main Ideas
 Proof of Theorem 2 is based on a (sub\super-)martingale analysis.
 We consider some observables in the process and identify regimes in 

which they increase or decrease in expectation.
 Examples:

 Number of proclaimed true leaves in the tree.
 Distribution of depths in proclaimed true subtree.
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Further Results
 With a refined analysis we also consider other structural properties.
 When the error effect survives:

 Identify parameters which ensure that false components are sublinear.
 Also control the size of the components.

 When the error effect is completely eliminated:
 Identify parameters which also ensure that proportion of false nodes in 

the tree is always at the noise level.



Future Directions
 The mysterious case of 𝒌 = 𝟑:

 Can the error effect be eliminated when only preforming depth 3 checks?
 Phase transitions:

 Determine the value of the critical probability 𝑝0.
 More general models:

 Can similar results be obtained for DAGS, instead of tree?
 Will require to define an appropriate preferential attachment model on 

DAGs, which allows “similar knowledge” units to cluster. 



Thank you!


