Low Degree Testing

Madhu Sudan
Harvard University
This talk

- Mostly ... historical tour of the low-degree testing problem: Results, motivations, some proof insights
Problem Definition

- Given oracle access to $f: S^m \rightarrow \mathbb{F}$ and d is f close to a degree d polynomial? (Usually $S = \mathbb{F} = \mathbb{F}_q$)

Considerations:

- Minimize query complexity (#queries to f)!
- **Independent of m**?
- Query structured sets (querying a line/plane/subspace, better than arbitrary queries (Why?))
- Detect even **small correlations** between f and degree d polynomials.
- **Reduce randomness**?
Why study this question?

- Historically:
 - Mathematical curiosity ... natural question!
 - Has applications ...
 - To PCPs
 - (un-)Bias amplification
 - Explicit small set expanders ...
Brief History

- **Phase 1**: Blum-Luby-Rubinfeld, Babai-Fortnow-Lund, Babai-Fortnow-Levin-Szegedy.
 - Special cases.
- **Phase 2**: Rubinfeld-S.
 - General definition/setup
- **Phase 3**: Arora-Safra, ALMSS, Polishchuk-Spielman Applications ← Strengthenings
- Multiple directions:
 - Correlation detection:
 - Randomness reduction:
 - “Moderate degree”: \(d > |S|\)
Linearity Testing

- Say $f: \mathbb{F}_2^m \to \mathbb{F}_2$; test for “$d = 1 + \text{homogeneity}$”.
- The BLR test: Pick $a, b \in \mathbb{F}_2^m$ unif. ind.
 - Accept iff $f(a) + f(b) = f(a + b)$
 - Def: $\text{Rej}(f) := \Pr_{a, b}[f(a) + f(b) \neq f(a + b)]$
- Clearly: f linear $\iff \text{Rej}(f) = 0$
- Closeness: $\delta(f, g) := \Pr_{a}[f(a) \neq g(a)]$
 $\delta(f) := \min_{\{g \text{ linear}\}} \{\delta(f, g)\}$
- BLR Theorem: $\text{Rej}(f) < \frac{2}{9} \Rightarrow \delta(f) \leq 2\text{Rej}(f)$
- [Bellare-Coppersmith-Hastad-Kiwi-S.] $\delta(f) \leq \text{Rej}(f) \leq 3\delta(f)$
Role of the Linearity Test in PCPs

- Note: Growing space of functions (size 2^m); Query complexity $O(1)$
- First glimpse of $O(1)$ query PCPs.
- Leads to (relatively simple) PCPs of exponential size with $O(1)$ queries. (Non-trivial as a MIP)
- Yields poly size PCPs in [Arora-Lund-Motwani-S.-Szegedy]
- [Bellare-Goldreich-S.]: Improved analysis improves PCP query complexity ... motivating BCHKS.
- [Hastad]: Tests long codes using noisy BLR-test ... leads to optimal query complexity.
Proof Ideas

Proof 2: Fourier Analysis

- Viewed properly: linear functions form orthogonal basis of all functions $F^m_2 \rightarrow F_2$
- $\{f_g := 1 - 2\delta(f, g)\}_{\text{linear}}$: coordinates of f in this basis.
- Miraculous Identity: $\text{Rej}(f) = \sum_g \hat{f}_g^3$

Proof 1: “Original” BLR proof (due to Coppersmith)

Vote$^f_a(r) := f(a + r) - f(r)$; $h(a) := \text{Maj}_r\{\text{Vote}^f_a(r)\}$

- $\delta(h, f) \leq 2 \text{Rej}(f)$
- $\text{Rej}(f) < \frac{2}{9} \Rightarrow h \text{ linear.}$

Key step: $\forall a \Pr_{r,s}[\text{Vote}_a(r) \neq \text{Vote}_a(s)] \leq 2 \text{Rej}(f)$

$$f(a + r) + f(s) \approx f(a + r + s) \approx f(a + s) + f(r)$$
Beyond linearity?

- **Proof 2?**
 - No luck in this direction … orthogonality is very special
 - Nearest attempts to extend:
 - [Kiwi] (other fields)
 - [Kaufman-Litsyn], [Kaufman-S.]: any sparse high dist. linear code … use MacWilliams Identity, Krawtchouk …
 - [Kopparty-Saraf]: Above reduces to linearity test.
Beyond Linearity

First studied in [Gemmell-Lipton-Rubinfeld-S.-Wigderson]:

Proof 1 Extends:

- $f: \mathbb{Z}_p^m \rightarrow \mathbb{Z}_p$ is of deg $d \Leftrightarrow \forall a, b \sum_{i=0}^{d+1} (-1)^i \binom{d+1}{i} f(a + ib) = 0$
- Leads to natural test: #Queries = $d + 2$
- Can define $\text{Vote}_a(r)$
- Can prove the magic identity:
 \[
 \Pr_{r,s}[\text{Vote}_a(r) \neq \text{Vote}_b(s)] \leq 2(d + 1)\text{Rej}(f)
 \]
- Independent of the number of variables!!
- Actually ...
 ... thanks to [Sasha Shen]!
Summary of State of Knowledge in ’91

- Have a low degree test ...
- Analysis OK-ish:
 - \(\text{Rej}(f') \geq \frac{\delta(f)}{d^3} \)
- No geometry
- No symmetry
- No intuition ...

Aug 14-16, 2023
‘91–’92: Rubinfeld-S, ALMSS

- Tests rely on the fact that f restricted to affine subspace (line) $A \subseteq \mathbb{F}^m$ does not increase in degree.
 - $\delta^t(f) \equiv \mathbb{E}_{\text{affine } A: \dim(A) = t}[\delta(f|_A)]$
 - Fact: $\delta^t(f) \leq \text{Rej}(f) \leq d \cdot \delta^t(f)$
 - In fact $\delta^t(f)$ more important than $\text{Rej}(f)$...
 - Corresponds to query complexity of q^t but morally $O(1)$

- Question [ALMSS]: Is $\delta(f) = \Theta(\delta^{\text{one}}(f))$?
- [RS]: Yes, provided this is true for $m = 2^*$
- [Arora-Safra]: It is true for $m = 2^*$!
- Thm [ALMSS]: $d = o(q^{1/3}) \Rightarrow \delta(f) = \Theta(\delta^{\text{one}}(f))$
Polynomials and PCPs

- **PCP**: Format for proving general statements (e.g., “G is 3-colorable”) verifiable by few queries.
- Initial constructions + currently best-known constructions: Depend on polynomials and low-degree testing.
- **Why polynomials?**
 1. Polynomials are error-correcting codes!
 2. Polynomial are expressive
Polynomials = Walls

- Data/Proof = zillions of bits ... each bit acting independently
Polynomials = walls

- Proof = zillions of bits ... each bit acting independently
- Polynomial = glue that binds them together.
An Analogy

- Inspecting a building:
 - "Building = $O(n)$ atoms" ... OR
 - "Building = $O(1)$ rooms = $O(1)$ walls"

- Former view:
 - Verifying stability takes $\Omega(n)$-checks.

- Latter view:
 - Verifying stability takes $O(1)$-checks +
 - $O(1)$-"stability of wall-checks".

- Polynomials \equiv Walls!
A (NP-)complete statement:
- Graph $G \in \{0,1\}^{n \times n}$ is 3-colorable.
- Proof: Coloring ($\Theta(n)$-bits).
- Verification: Read entire coloring.

Equivalent (NP-)complete statement:
- Given: Φ local map from poly’s to poly’s
- \exists poly’s A, B, C, D s.t. $\Phi(A, B, C, D) \equiv 0$
- Verification:
 - Step 1: Test A, B, C, D are polynomials
 - Step 2: Verify $\Phi(A, B, C, D)[r] = 0$ for random r.

Polynomials = Walls?
Polynomials = Wall - II

- Reduction from 3-coloring to polynomial satisfiability [Ben-Sasson-S. ’04]

\[\Phi(A, B, C, D)[x_0, x, y] = \Phi_E(A, B, C, D)[x_0, x, y] \]
\[= (A[x](A[x] - 1)(A[x] - 2) - B[x]\Pi_{v \in V}(x - v)) \]
\[+ x_0 \cdot (E(x, y) \cdot \Pi_{i \in \{-2,-1,1,2\}}(A[x] - A[y] - i)) \]
\[- C[x, y]\Pi_{v \in V}(x - v) - D(x, y)\Pi_{v \in V}(y - v)) \]
Finer questions: Degree vs. Field Size

- If $d < q$, then distance of code $= 1 - \frac{d}{q}$ (want $\Omega(1)$)
- Message size $k \approx \left(\frac{d}{m}\right)^m$; Codeword size $n = q^m$
- Want $n = k^{1+o(1)}$ (implies PCP blowup $n^{1+o(1)}$)
 $\iff q = O\left(d^{1+o(1)}\right)$
- ALMSS Thm: Needed $q = \Omega(d^3)$ (inherited from [AS])
- Resolved by Polishchuk-Spielman ... $q = O(d)$ suffices. (Used Berlekamp-Welch decoder, Introduced polynomial method? Derivatives/multiplicity?)
- Aside: Proofs still need $q > 2d$. Necessary?
Small Correlations

- **Motivation:** Get PCPs with 2 queries, $\omega(1)$ answer size and $o(1)$ error.
- **Need to say something about $\delta(f)$ even if $\delta^t(f)$ = .999**
 - f is showing .001 correlation with low-degree polynomials on t dim subspaces.
 - Is f correlated with some fixed low-degree polynomial everywhere?
- **Hope:**
 - If $\delta(f, g) = \epsilon$ then for most A, $\delta(f|_A, g|_A) \approx \epsilon$
 - Problem: What about $\delta(f|_A, g^A)$?
- **[Raz-Safra]:** $d = o(q) \Rightarrow \delta(f) = (1 + o(1))\delta^2(q)$
- **[Arora-S.]:** $d = o(q^{1/4}) \Rightarrow \delta(f) = (1 + o(1))\delta^1(q)$
Key insights [RazSafra]

- Consider structure of testing graph
- Neighboring tests overlap ...
 ... on entire line
- Restriction to line is a code!!

- Powerful tool: E.g. used to test tensor product of codes
 [BenSasson-S.]
- Built in to C^3-LTCs of
 [DinurEvraLivneLubotzkyMozes]
Key insights [Arora-S.]

- Two steps:
 - General reduction from m dim. to 3-dim.
 - 3-dim. extension of Polishchuk-Spielman replacing [Berlekamp-Welch] with list-decoder.
Reducing Randomness

- Randomness of native low-deg. test:
 - Picks two random points of code (line).
 - Code-length = n ⇒ Randomness ≥ 2 log n ⇒ PCP blowup = n^2

- Polishchuk-Spielman: Use axis parallel lines
 - m variables ⇒ $O(m)$ queries, PCP size $O(n^{1+1/m})$
 - Inherent?

- Goldreich-S.: Use $O(n)$ random lines ... works, but what does it mean?

- BenSasson-S.-Vadhan-Wigderson: Use $\tilde{O}(n)$ lines in ϵ-biased directions.
 - ⇒ PCPs of length $O(n^{1+o(1)})$ [BenSassonGoldreichHarshaS.Vadhan]
 - Ultimate Result: [Moshkovitz-Raz] Use lines in “subfield” directions
\(d \geq q \)

- **Summary:** '91 – first LDT – no motivation.
- '91-2000 ... many improvements all motivated by PCPs.
 - \(\delta(f) = \Theta(\delta^1(f)) \) provided \(q = \Omega(d) \)
 - \(\delta(f) = (1 + o(1)) \cdot \delta^2(f) \) provided \(q = \Omega(d) \)
 - \(\delta(f) = (1 + o(1)) \cdot \delta^1(f) \) provided \(q = \Omega(d^4) \)
- '2001: [AlonKaufmanKrivelevichLitsynRon] “Return to LDTs without motivation” ... \(d \rightarrow \infty, q = 2 \)
 - (Restrict individual degrees to \(\leq q - 1 \))
 - Inherent query complexity \(2^d \) - indep. of \(m \)
 - AKKLR Thm: \(q = 4^d \) suffices (rejects \(f \) that is \(\Omega(1) \) far w.p. \(\Omega(1) \))
AKKLR Test

- Pick random $d + 1$ dim. subspace A;
- Reject iff $\deg(f|_A) > d$.

I.e., $\text{Rej}(f) := 2^{d+1} \cdot \delta^{d+1}(f)$.

- Why $d + 1$: Smallest dim. where some function is not of degree d.

- AKKLR Analysis: Extends BLR naturally. (need to extend magical step).
XOR Lemma for Bias of Polynomials

- $\text{Bias}(f) := 1 - \left(\frac{q}{q-1}\right) \delta(f, g)$

- **XOR question:** Let $F(x^1, \ldots, x^n) = f(x^1) + \cdots + f(x^n)$. If $\text{Bias}(f) < 1 - \epsilon$ then is $\text{Bias}(F) \leq \exp(-n)$?

- **Viola-Wigderson Thm:** Yes .. $\text{Bias}(F) \leq \exp\left(-\frac{\epsilon n}{2^d}\right)$

- **Key ingredients in proof:**
 - Bias is not directly multiplicative
 - But something called Gowers Norm is ...
 - Gowers norm nicely relates to AKKLR rejection probability, which relates to distance/bias ...
Extending + improving AKKLR

- Extending beyond $q = 2$: [KaufmanRon] + [JutlaPatthakRudraZuckerman]: Query complexity $q^{o\left(\frac{d}{q}\right)}$
 - (magic becomes more complex)

- Improving analysis ($q = 2$):
 - Natural test: $O(2^d)$ queries
 - Analysis weak: Shows only $\delta(f) \leq 2^d \cdot \text{Rej}(f) = 4^d \cdot \delta^{d+1}(f)$
 - Optimal Analysis: [BhattacharyyaKoppartySchoenebeckS.Zuckerman]
 $$\delta(f) = O\left(\delta^{d+1}(f)\right) \text{ unless } \delta^{d+1}(f) = \Omega\left(2^{-d}\right)$$

- Improved analysis $q > 2$:
 [HaramatyShpilkaS.][KaufmanMinzer]
Main Insight

- [BKSSZ, HSS]: If $\delta(f)$ large then on all but $c_{q,d}$ hyperplanes H, $\delta(f|_H)$ large.
- (No explicit local decoder ...)
 - Example: $d = 1$: “Linearity test”
 - Inductive Claim: $\delta(f) > .01 \Rightarrow \delta^{10}(f) > .001 - \frac{5}{2^m}$
 - Helpful claim: $\delta^{10}(f) > 3\delta(f)(1 - \delta(f))$
 - If H_1, \ldots, H_5 s.t $\delta(f|_{H_i}) \leq .01$ then $\delta(f) \leq \frac{1}{8} + .03$
- [KM]: Small set expansion properties of the testing graph. (Many ideas adapted from the proof of 2-2 games conjecture [KhotMinzerSafra])
Some introspection:
What made polys testable?

- Form linear error-correcting code; satisfy local constraints.
 - Motivated [Sipser-Spielman]!! But alas insufficient [BenSasson-Harsha-Raskhodnikova]

- Contained in nice tensor-codes.
 - Motivated [BenSasson-S] to study tensor codes
 - plays role in recent C^3-LTCs of [DinurEvraLivneLivneLubotzkyMozes]

- Enjoys Nice symmetries: “Affine-invariance”
 - Demystifies “magic” \Leftarrow “Row rank=column rank”
 - Can even extend BKSSZ/HSS [Haramaty-RonZewi-S.]
 - Not necessary. Can test $f: S^n \to \mathbb{F}$ [Bafna-Srinivasan-S.], [Amireddy-Srinivasan-S.]
Summary/Future questions

- Over three decades ... have developed a deep understanding of the local-global structure of polynomials

- Some future directions:
 - Explain everything in terms of affine-invariance?
 - Generalize to product property codes
 - LTCs to PCPs ... abstract expressivity?
Thank You!