Low Degree Testing

Madhu Sudan

Harvard University

This talk

Mostly ... historical tour of the low-degree testing problem: Results, motivations, some proof insights

Problem Definition

- Given oracle access to $f: S^{m} \rightarrow \mathbb{F}$ and d is f close to a degree d polynomial? (Usually $S=\mathbb{F}=\mathbb{F}_{q}$)
- Considerations:
- Minimize query complexity (\#queries to f)!
- Independent of m ?
- Query structured sets (querying a line/plane/subspace, better than arbitrary queries (Why?))
- Detect even small correlations between f and degree d polynomials.
- Reduce randomness?

Why study this question?

- Historically:
- Mathematical curiosity ... natural question!
- Has applications ...
- To PCPs
- (un-)Bias amplification
- Explicit small set expanders ...

Brief History

- Phase 1: Blum-Luby-Rubinfeld, Babai-FortnowLund, Babai-Fortnow-Levin-Szegedy.
- Special cases.
- Phase 2: Rubinfeld-S.
- General definition/setup
- Phase 3: Arora-Safra, ALMSS, PolishchukSpielman Applications \Leftarrow Strengthenings
- Multiple directions:
- Correlation detection:
- Randomness reduction:
- "Moderate degree": $(d>|S|)$

Linearity Testing

- Say $f: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2} ;$ test for " $d=1+$ homogeneity".
- The BLR test: Pick $a, b \in \mathbb{F}_{2}^{m}$ unif. ind.
- Accept iff $f(a)+f(b)=f(a+b)$
- Def: $\operatorname{Rej}(f):=\operatorname{Pr}_{a, b}[f(a)+f(b) \neq f(a+b)]$
- Clearly: f linear $\Leftrightarrow \operatorname{Rej}(f)=0$
- Closeness: $\delta(f, g):=\operatorname{Pr}_{a}[f(a) \neq g(a)]$

$$
\delta(f):=\min _{\{g \text { linear }\}}\{\delta(f, g)\}
$$

- BLR Theorem: $\operatorname{Rej}(f)<\frac{2}{9} \Rightarrow \delta(f) \leq 2 \operatorname{Rej}(f)$
- [Bellare-Coppersmith-Hastad-Kiwi-S.] $\delta(f) \leq \operatorname{Rej}(f) \leq 3 \delta(f)$

Role of the Linearity Test in PCPs

- Note: Growing space of functions (size 2^{m}); Query complexity $O(1)$
- First glimpse of $O(1)$ query PCPs.
- Leads to (relatively simple) PCPs of exponential size with O (1) queries. (Non-trivial as a MIP)
- Yields poly size PCPs in [Arora-Lund-Motwani-S.-Szegedy]
- [Bellare-Goldreich-s.]: Improved analysis improves PCP query complexity ... motivating BCHKS.
- [Hastad]: Tests long codes using noisy BLR-test ... leads to optimal query complexity.

Proof Ideas

- Proof 2: Fourier Analysis
- Viewed properly: linear functions form orthogonal basis of all functions $\mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$
- $\left\{\widehat{f_{g}}:=1-2 \delta(f, g)\right\}_{\{g \text { linear }\}}$: coordinates of f in this basis.
- Miraculous Identity: $\operatorname{Rej}(f)=\sum_{g} \widehat{f}_{g}{ }^{3}$
- Proof 1: "Original" BLR proof (due to Coppersmith) $\operatorname{Vote}_{a}^{f}(r):=f(a+r)-f(r) ; \quad h(a):=\operatorname{Maj}_{r}\left\{\operatorname{Vote}_{a}^{f}(r)\right\}$
- $\delta(h, f) \leq 2 \operatorname{Rej}(f)$
- $\operatorname{Rej}(f)<\frac{2}{9} \Rightarrow h$ linear.
- Key step: $\forall a \underset{r, s}{\operatorname{Pr}}\left[\operatorname{Vote}_{a}(r) \neq \operatorname{Vote}_{a}(s)\right] \leq 2 \operatorname{Rej}(f)$

$$
f(a+r)+f(s) \approx f(a+r+s) \approx f(a+s)+f(r)
$$

Beyond linearity?

- Proof 2?
- No luck in this direction ... orthogonality is very special
- Nearest attempts to extend:
- [Kiwi] (other fields)
- [Kaufman-Litsyn], [Kaufman-S.]: any sparse high dist. linear code ... use MacWilliams Identity, Krawtchouk ...
- [Kopparty-Saraf]: Above reduces to linearity test.

Beyond Linearity

- First studied in [Gemmell-Lipton-Rubinfeld-S.-Wigderson]:
- Proof 1 Extends:
- $f: \mathbb{Z}_{p}^{m} \rightarrow \mathbb{Z}_{p}$ is of deg $d \Leftrightarrow \forall a, b \sum_{i=0}^{d+1}(-1)^{i}\binom{d+1}{i} f(a+i b)=0$
- Leads to natural test: \#Queries $=d+2$
- Can define $\operatorname{Vote}_{a}(r)$
- Can prove the magic identity:

$$
\underset{r, s}{\operatorname{Pr}}\left[\operatorname{Vote}_{a}(r) \neq \operatorname{Vote}_{b}(s)\right] \leq 2(d+1) \operatorname{Rej}(f)
$$

- Independent of the number of variables!!
- Actually ...
... thanks to [Sasha Shen]!

Summary of State of Knowledge in '91

- Have a low degree test ...
- Analysis OK-ish:
$-\operatorname{Rej}(f) \geq \frac{\delta(f)}{d^{3}}$
- No geometry
- No symmetry
- No intuition ...

'91-'92: Rubinfeld-S, ALMSS

- Tests rely on the fact that f restricted to affine subspace (line) $A \subseteq \mathbb{F}^{m}$ does not increase in degree.
- $\delta^{t}(f):=\mathbb{E}_{\{\text {affine } A: \operatorname{dim}(A)=t\}}\left[\delta\left(\left.f\right|_{A}\right)\right]$
- Fact: $\delta^{t}(f) \leq \operatorname{Rej}(f) \leq d \cdot \delta^{t}(f)$
- In fact $\delta^{t}(f)$ more important than $\operatorname{Rej}(f)$...
- Corresponds to query complexity of q^{t} but morally O (1)
- Question [ALMSS]: Is $\delta(f)=\Theta\left(\delta^{\text {one }}(f)\right)$?
- [RS]: Yes, provided this is true for $m=2^{*}$
- [Arora-Safra]: It is true for $m=2^{*}$!
- Thm [ALMSS]: $d=o\left(q^{1 / 3}\right) \Rightarrow \delta(f)=\Theta\left(\delta^{\text {one }}(f)\right)$

Polynomials and PCPs

- PCP: Format for proving general statements (e.g., " G is 3-colorable") verifiable by few queries.
- Initial constructions + currently best-known constructions: Depend on polynomials and lowdegree testing.
- Why polynomials?

1. Polynomials are error-correcting codes!
2. Polynomial are expressive

Polynomials $=$ Walls

- Data/Proof $=$ zillions of bits.. each bit acting independently

Polynomials = walls

- Proof = zillions of bits ... each bit acting independently
- Polynomial = glue that binds them together.

An Analogy

- Inspecting a building:
- "Building $=O(n)$ atoms" $\quad .$. OR
- "Building $=O(1)$ rooms $=O(1)$ walls"
- Former view:
- Verifying stability takes $\Omega(n)$-checks.
- Latter view:
- Verifying stability takes O(1)-checks +
- $O(1)$-"stability of wall-checks".
- Polynomials \equiv Walls!

Polynomials = Walls?

- A (NP-)complete statement:
- Graph $G \in\{0,1\}^{n \times n}$ is 3-colorable.
- Proof: Coloring ($\Theta(n)$-bits).
- Verification: Read entire coloring.
- Equivalent (NP-)complete statement:
- Given: Ф local map from poly's to poly's
- \exists poly's A, B, C, D s.t. $\Phi(A, B, C, D) \equiv 0$
- Verification:
- Step 1: Test A, B, C, D are polynomials
- Step 2: Verify $\Phi(A, B, C, D)[r]=0$ for random r.

Polynomials = Wall - II

- Reduction from 3-coloring to polynomial satisfiability [Ben-Sasson-S.'04]
- $\Phi(A, B, C, D)\left[x_{0}, \boldsymbol{x}, \boldsymbol{y}\right]=\Phi_{E}(A, B, C, D)\left[x_{0}, \boldsymbol{x}, \boldsymbol{y}\right]$

$$
\begin{aligned}
= & \left(A[x](A[x]-1)(A[x]-2)-B[x] \Pi_{v \in V}(x-v)\right) \\
& +x_{0} \cdot\left(E(x, y) \cdot \Pi_{i \in\{-2,-1,1,2\}}(A[x]-A[y]-i)\right. \\
& \left.-C[x, y] \Pi_{v \in V}(x-v)-D(x, y) \Pi_{v \in V}(\boldsymbol{y}-v)\right)
\end{aligned}
$$

Finer questions: Degree vs. Field Size

- If $d<q$, then distance of code $=1-\frac{d}{q}$ (want $\Omega(1)$)
- Message size $k \approx\left(\frac{d}{m}\right)^{m}$; Codeword size $n=q^{m}$
- Want $n=k^{1+o(1)}$ (implies PCP blowup $n^{1+o(1)}$) $\Leftarrow q=O\left(d^{1+o(1)}\right)$
- ALMSS Thm: Needed $q=\Omega\left(d^{3}\right)$ (inherited from [AS])
- Resolved by Polishchuk-Spielman ... $q=O(d)$ suffices. (Used Berlekamp-Welch decoder, Introduced polynomial method? Derivatives/multiplicity?)
- Aside: Proofs still need $q>2 d$. Necessary?

Small Correlations

- Motivation: Get PCPs with 2 queries, $\omega(1)$ answer size and $o(1)$ error.
- Need to say something about $\delta(f)$ even if $\delta^{t}(f)$ = . 999
- f is showing .001 correlation with low-degree polynomials on t dim subspaces.
- Is f correlated with some fixed low-degree polynomial everywhere?
- Hope:
- If $\delta(f, g)=\epsilon$ then for most $A, \delta\left(\left.f\right|_{A},\left.g\right|_{A}\right) \approx \epsilon$
- Problem: What about $\delta\left(\left.f\right|_{A}, g^{A}\right)$?
- [Raz-Safra]: $d=o(q) \Rightarrow \delta(f)=(1+o(1)) \delta^{2}(q)$
- [Arora-S.]: $d=o\left(q^{1 / 4}\right) \Rightarrow \quad \delta(f)=(1+o(1)) \delta^{1}(q)$

Tests=2-dim. planes

Key insights [RazSafra] $]_{\text {Code }}$

 Coordinates- Consider structure of testing graph
- Neighboring tests overlap ...
... on entire line
- Restriction to line is a code!!
- Powerful tool: E.g. used to test tensor product of codes
[BenSasson-S.]
- Built in to C^{3}-LTCs of [DinurEvraLivneLubotzkyMozes]

Key insights [Arora-S.]

- Two steps:

General reduction from m dim. to 3-dim.
3-dim. extension of Polishchuk-Spielman replacing [Berlekamp-Welch] with list-decoder.

Reducing Randomness

- Randomness of native low-deg. test:
- Picks two random points of code (line).
- Code-length $=\mathrm{n} \Rightarrow$ Randomness $\geq 2 \log n \Rightarrow$ PCP blowup $=$ n^{2}
- Polishchuk-Spielman: Use axis parallel lines
- m variables $\Rightarrow O(m)$ queries, PCP size $O\left(n^{1+1 / m}\right)$
- Inherent?
- Goldreich-S.: Use $O(n)$ random lines ... works, but what does it mean?
- BenSasson-S.-Vadhan-Wigdersion: Use $\tilde{O}(n)$ lines in ϵ-biased directions.
- \Rightarrow PCPs of length $O\left(n^{1+o(1)}\right)$ [BenSassonGoldreichHarshaS.Vadhan]
- Ultimate Result: [Moshkovitz-Raz] Use lines in "subfield" directions

$d \geq q$

- Summary: `91 - first LDT - no motivation.
- '91-2000 ... many improvements all motivated by PCPs.
- $\delta(f)=\Theta\left(\delta^{1}(f)\right)$ provided $q=\Omega(d)$
- $\delta(f)=(1+o(1)) \cdot \delta^{2}(f)$ provided $q=\Omega(d)$
- $\delta(f)=(1+o(1)) \cdot \delta^{1}(f)$ provided $q=\Omega\left(d^{4}\right)$
- '2001: [AlonKaufmanKrivelevichLitsynRon] "Return to LDTs without motivation" ... $d \rightarrow \infty, q=2$
- (Restrict individual degrees to $\leq q-1$)
- Inherent query complexity 2^{d} - indep. of m !
- AKKLR Thm: $q=4^{d}$ suffices (rejects f that is $\Omega(1)$ far w.p. $\Omega(1)$)

AKKLR Test

- Pick random $d+1$ dim. subspace A;
- Reject iff $\operatorname{deg}\left(\left.f\right|_{\mathrm{A}}\right)>d$.
- I.e., $\operatorname{Rej}(f):=2^{d+1} \cdot \delta^{d+1}(f)$.
- Why $d+1$: Smallest dim. where some function is not of degree d
- AKKLR Analysis: Extends BLR naturally. (need to extend magical step).

XOR Lemma for Bias of Polynomials

- $\operatorname{Bias}(f):=1-\left(\frac{q}{q-1}\right) \delta(f, g)$
- XOR question: Let $F\left(x^{1}, \ldots, x^{n}\right)=f\left(x^{1}\right)+\cdots+f\left(x^{n}\right)$.

If $\operatorname{Bias}(f)<1-\epsilon$ then is $\operatorname{Bias}(F) \leq \exp (-n)$?

- Viola-Wigderson Thm: Yes .. $\operatorname{Bias}(F) \leq \exp \left(-\frac{\epsilon n}{2^{d}}\right)$
- Key ingredients in proof:
- Bias is not directly multiplicative
- But something called Gowers Norm is ...
- Gowers norm nicely relates to AKKLR rejection probability, which relates to distance/bias ...

Extending + improving AKKLR

- Extending beyond $q=2$: [KaufmanRon] +
[JutlaPatthakRudraZuckerman]: Query complexity $q^{o\left(\frac{d}{q}\right)}$
- (magic becomes more complex)
- Improving analysis ($q=2$):
- Natural test: $O\left(2^{d}\right)$ queries
- Analysis weak: Shows only $\delta(f) \leq 2^{d} \cdot \operatorname{Rej}(f)=4^{d}$ - $\delta^{d+1}(f)$
- Optimal Analysis: [BhattacharyyaKoppartySchoenebecks.Zuckerman]

$$
\delta(f)=O\left(\delta^{d+1}(f)\right) \text { unless } \delta^{d+1}(f)=\Omega\left(2^{-d}\right)
$$

- Improved analysis $q>2$:
[HaramatyShpilkaS.][KaufmanMinzer]

Main Insight

- [BKSSZ, HSS]: If $\delta(f)$ large then on all but $c_{q, d}$ hyperplanes $H, \delta\left(\left.f\right|_{H}\right)$ large.
- (No explicit local decoder ...)
- Example: $d=1$:"Linearity test"
- Inductive Claim: $\delta(f)>.01 \Rightarrow \delta^{10}(f)>.001-\frac{5}{2^{m}}$
- Helpful claim: $\delta^{10}(f)>3 \delta(f)(1-\delta(f))$
- If $H_{1}, \ldots H_{5}$ s.t $\delta\left(\left.f\right|_{H_{i}}\right) \leq .01$ then $\delta(f) \leq \frac{1}{8}+.03$
- [KM]: Small set expansion properties of the testing graph. (Many ideas adapted from the proof of 2-2 games conjecture [KhotMinzerSafra])

Some introspection: What made polys testable?

- Form linear error-correcting code; satisfy local constraints.
- Motivated [Sipser-Spielman]!! But alas insufficient [BenSasson-Harsha-Raskhodnikova]
- Contained in nice tensor-codes.
- Motivated [BenSasson-S] to study tensor codes
- plays role in recent C^{3}-LTCs of [DinurEvraLivneLubotzkyMozes]
- Enjoys Nice symmetries: "Affine-invariance"
- [KaufmanS.] Seems to explain much of the success (a la BLR, RS, AKKLR, KR, JPRZ).
- Demystifies "magic" \Leftarrow "Row rank=column rank"
- Can even extend BKSSZ/HSS [Haramaty-RonZewi-S.]
- Not necessary. Can test $f: S^{n} \rightarrow \mathbb{F}$ [Bafna-Srinivasan-S.], [Amireddy-Srinivasan-S.]

Summary/Future questions

- Over three decades ... have developed a deep understanding of the local-global structure of polynomials
- Some future directions:
- Explain everything in terms of affine-invariance?
- Generalize to product property codes
- LTCs to PCPs ... abstract expressivity?

Thank You!

