Low Degree Testing

Madhu Sudan Harvard University

Aug 14-16, 2023

WAC 2023: Low Degree Testing

1 of 31

This talk

 Mostly ... historical tour of the low-degree testing problem: Results, motivations, some proof insights

Problem Definition

- Given oracle access to $f: S^m \to \mathbb{F}$ and d is f close to a degree d polynomial? (Usually $S = \mathbb{F} = \mathbb{F}_q$)
- Considerations:
 - Minimize <u>query complexity</u> (#queries to f)!
 Independent of m?
 - Query <u>structured sets</u> (querying a line/plane/subspace, better than arbitrary queries (Why?))
 - Detect even <u>small correlations</u> between *f* and degree *d* polynomials.
 - <u>Reduce randomness</u>?

Why study this question?

Historically:

- Mathematical curiosity ... natural question!
- Has applications ...
 - To PCPs
 - (un-)Bias amplification
 - Explicit small set expanders ...

Brief History

- Phase 1: Blum-Luby-Rubinfeld, Babai-Fortnow-Lund, Babai-Fortnow-Levin-Szegedy.
 - Special cases.
- Phase 2: Rubinfeld-S.
 - General definition/setup
- Phase 3: Arora-Safra, ALMSS, Polishchuk-Spielman Applications ← Strengthenings
- Multiple directions:
 - Correlation detection:
 - Randomness reduction:
 - Moderate degree": (d > |S|)

Linearity Testing

• Say $f: \mathbb{F}_2^m \to \mathbb{F}_2$; test for "d = 1 + homogeneity".

• The BLR test: Pick $a, b \in \mathbb{F}_2^m$ unif. ind.

• Accept iff f(a) + f(b) = f(a + b)

- **Def:** $\operatorname{Rej}(f) \coloneqq \Pr_{a,b}[f(a) + f(b) \neq f(a + b)]$
- Clearly: f linear \Leftrightarrow Rej(f) = 0
- Closeness: $\delta(f,g) \coloneqq \Pr_{a}[f(a) \neq g(a)]$ $\delta(f) \coloneqq \min_{\{g \text{ linear}\}} \{\delta(f,g)\}$
- BLR Theorem: $\operatorname{Rej}(f) < \frac{2}{9} \Rightarrow \delta(f) \le 2\operatorname{Rej}(f)$
- Bellare-Coppersmith-Hastad-Kiwi-S. $\delta(f) \leq \operatorname{Rej}(f) \leq 3\delta(f)$

Aug 14-16, 2023

WAC 2023: Low Degree Testing

Role of the Linearity Test in PCPs

- Note: Growing space of functions (size 2^m);
 Query complexity O(1)
- First glimpse of O(1) query PCPs.
- Leads to (relatively simple) PCPs of exponential size with O(1) queries. (Non-trivial as a MIP)
- Yields poly size PCPs in [Arora-Lund-Motwani-S.-Szegedy]
- Bellare-Goldreich-S.]: Improved analysis improves PCP query complexity ... motivating BCHKS.
- [Hastad]: Tests long codes using noisy BLR-test
 ... leads to optimal query complexity.

Proof Ideas

Proof 2: Fourier Analysis

• Viewed properly: linear functions form orthogonal basis of all functions $\mathbb{F}_2^m \to \mathbb{F}_2$

• $\{\widehat{f}_g \coloneqq 1 - 2\delta(f,g)\}_{\{g \text{ linear}\}}$: coordinates of f in this basis.

- Miraculous Identity: $\operatorname{Rej}(f) = \sum_g \widehat{f_g}^3$
- Proof 1: "Original" BLR proof (due to Coppersmith) $\operatorname{Vote}_{a}^{f}(r) \coloneqq f(a+r) - f(r); \quad h(a) \coloneqq \operatorname{Maj}_{r}\left\{\operatorname{Vote}_{a}^{f}(r)\right\}$
 - $\delta(h, f) \leq 2 \operatorname{Rej}(f)$
 - $\operatorname{Rej}(f) < \frac{2}{9} \Rightarrow h$ linear.
 - Key step: $\forall a \Pr_{r,s}[Vote_a(r) \neq Vote_a(s)] \le 2Rej(f)$ $f(a+r) + f(s) \approx f(a+r+s) \approx f(a+s) + f(r)$

Aug 14-16, 2023

WAC 2023: Low Degree Testing

Beyond linearity?

- Proof 2?
 - No luck in this direction ... orthogonality is very special
 - Nearest attempts to extend:
 - [Kiwi] (other fields)
 - [Kaufman-Litsyn], [Kaufman-S.]: any sparse high dist. linear code ... use MacWilliams Identity, Krawtchouk ...
 - [Kopparty-Saraf]: Above reduces to linearity test.

Beyond Linearity

- First studied in [Gemmell-Lipton-Rubinfeld-S.-Wigderson]:
- Proof 1 Extends:
 - $f: \mathbb{Z}_p^m \to \mathbb{Z}_p$ is of deg $d \Leftrightarrow \forall a, b \sum_{i=0}^{d+1} (-1)^i {d+1 \choose i} f(a+ib) = 0$
 - Leads to natural test: #Queries = d + 2
 - Can define Vote_a(r)
 - Can prove the magic identity: $\Pr[Vote_a(r) \neq Vote_b(s)] \le 2(d + 1)Rej(f)$
 - Independent of the number of variables!!
 - Actually ...
 - ... thanks to [Sasha Shen]!

Summary of State of Knowledge in '91

- Have a low degree test ...
- Analysis OK-ish:

•
$$\operatorname{Rej}(f) \ge \frac{\delta(f)}{d^3}$$

- No geometry
- No symmetry
- No intuition ...

`91-'92: Rubinfeld-S, ALMSS

- Tests rely on the fact that f restricted to affine subspace (line) $A \subseteq \mathbb{F}^m$ does not increase in degree.
- $\delta^t(f) \coloneqq \mathbb{E}_{\{\operatorname{affine} A: \dim(A)=t\}}[\delta(f|_A)]$
- Fact: $\delta^t(f) \le \operatorname{Rej}(f) \le d \cdot \delta^t(f)$
- In fact $\delta^t(f)$ more important than $\operatorname{Rej}(f)$...
 - Corresponds to query complexity of q^t but morally 0(1)
- Question [ALMSS]: Is $\delta(f) = \Theta(\delta^{\text{one}}(f))$?
- [RS]: Yes, provided this is true for $m = 2^*$
- [Arora-Safra]: It is true for $m = 2^*$!
- Thm [ALMSS]: $d = o(q^{1/3}) \Rightarrow \delta(f) = \Theta(\delta^{\text{one}}(f))$

Polynomials and PCPs

- PCP: Format for proving general statements (e.g., "G is 3-colorable") verifiable by few queries.
- Initial constructions + currently best-known constructions: Depend on polynomials and lowdegree testing.
- Why polynomials?
 - 1. Polynomials are error-correcting codes!
 - 2. Polynomial are expressive

Polynomials = Walls

Data/Proof = zillions of bits ... each bit acting independently

Aug 14-16, 2023 WAC 2023: Low Degree Testing

Polynomials = walls

- Proof = zillions of bits ... each bit acting independently
- Polynomial = glue that binds them together.

Aug 14-16, 2023

WAC 2023: Low Degree Testing

15 of 31

An Analogy

- Inspecting a building:
 - "Building = O(n) atoms" ... OR
 - "Building = O(1) rooms = O(1) walls"
- Former view:
 - Verifying stability takes $\Omega(n)$ -checks.
- Latter view:
 - Verifying stability takes 0(1)-checks +
 - O(1)-"stability of wall-checks".
- Polynomials \equiv Walls!

Polynomials = Walls?

- A (NP-)complete statement:
 - Graph $G \in \{0,1\}^{n \times n}$ is 3-colorable.
 - Proof: Coloring ($\Theta(n)$ -bits).
 - Verification: Read entire coloring.
- Equivalent (NP-)complete statement:
 - Given: Φ local map from poly's to poly's
 - $\exists poly's A, B, C, D s.t. \Phi(A, B, C, D) \equiv 0$
 - Verification:
 - Step 1: Test A, B, C, D are polynomials
 - Step 2: Verify $\Phi(A, B, C, D)[r] = 0$ for random r.

Polynomials = Wall - II

- Reduction from 3-coloring to polynomial satisfiability [Ben-Sasson-S.'04]
- $\Phi(A, B, C, D)[x_0, \mathbf{x}, \mathbf{y}] = \Phi_E(A, B, C, D)[x_0, \mathbf{x}, \mathbf{y}]$
 - $= (A[x](A[x] 1)(A[x] 2) B[x]\Pi_{v \in V}(x v))$ $+ x_0 \cdot (E(x, y) \cdot \Pi_{i \in \{-2, -1, 1, 2\}}(A[x] - A[y] - i)$ $- C[x, y]\Pi_{v \in V}(x - v) - D(x, y)\Pi_{v \in V}(y - v))$

Finer questions: Degree vs. Field Size

• If d < q, then distance of code = $1 - \frac{d}{a}$ (want $\Omega(1)$)

- Message size $k \approx \left(\frac{d}{m}\right)^m$; Codeword size $n = q^m$
- Want $n = k^{1+o(1)}$ (implies PCP blowup $n^{1+o(1)}$) $\leftarrow q = O(d^{1+o(1)})$
- ALMSS Thm: Needed $q = \Omega(d^3)$ (inherited from [AS])
- Resolved by Polishchuk-Spielman ... q = O(d) suffices. (Used Berlekamp-Welch decoder, Introduced polynomial method? Derivatives/multiplicity?)
- Aside: Proofs still need q > 2d. Necessary?

Small Correlations

- Motivation: Get PCPs with 2 queries, $\omega(1)$ answer size and o(1) error.
- Need to say something about δ(f) even if δ^t(f) = .999
 - *f* is showing .001 correlation with low-degree polynomials on *t* dim subspaces.
 - Is f correlated with some fixed low-degree polynomial everywhere?

Hope:

- If $\delta(f,g) = \epsilon$ then for most A, $\delta(f|_A,g|_A) \approx \epsilon$
- Problem: What about $\delta(f|_A, g^A)$?
- [Raz-Safra]: $d = o(q) \Rightarrow \delta(f) = (1 + o(1))\delta^2(q)$
- [Arora-S.]: $d = o(q^{1/4}) \Rightarrow \delta(f) = (1 + o(1))\delta^1(q)$

Tests=2-dim. planes

Key insights [RazSafra] Code

Coordinates

- Consider structure of testing graph
- Neighboring tests overlap ...
 ... on entire line
- Restriction to line is a code!!
- Powerful tool: E.g. used to test tensor product of codes [BenSasson-S.]
- Built in to C³-LTCs of [DinurEvraLivneLubotzkyMozes]

Key insights [Arora-S.]

Two steps:

- General reduction from m dim. to 3-dim.
- 3-dim. extension of Polishchuk-Spielman replacing [Berlekamp-Welch] with list-decoder.

Reducing Randomness

- Randomness of native low-deg. test:
 - Picks two random points of code (line).
 - Code-length = n \Rightarrow Randomness $\ge 2 \log n \Rightarrow$ PCP blowup = n^2
- Polishchuk-Spielman: Use axis parallel lines
 - *m* variables $\Rightarrow O(m)$ queries, PCP size $O(n^{1+1/m})$
 - Inherent?
- Goldreich-S.: Use O(n) random lines ... works, but what does it mean?
- BenSasson-S.-Vadhan-Wigdersion: Use Õ(n) lines in ε-biased directions.
 - ⇒ PCPs of length $O(n^{1+o(1)})$ [BenSassonGoldreichHarshaS.Vadhan]
 - Ultimate Result: [Moshkovitz-Raz] Use lines in "subfield" directions

Aug 14-16, 2023 WAC 2023: Low Degree Testing

$d \ge q$

- Summary: '91 first LDT no motivation.
- `91-2000 ... many improvements all motivated by PCPs.
 - $\delta(f) = \Theta(\delta^1(f))$ provided $q = \Omega(d)$
 - $\delta(f) = (1 + o(1)) \cdot \delta^2(f)$ provided $q = \Omega(d)$

• $\delta(f) = (1 + o(1)) \cdot \delta^1(f)$ provided $q = \Omega(d^4)$

- `2001: [AlonKaufmanKrivelevichLitsynRon] "Return to LDTs without motivation" ... $d \rightarrow \infty, q = 2$
- (Restrict individual degrees to $\leq q 1$)
- Inherent query complexity 2^d indep. of m !
- AKKLR Thm: q = 4^d suffices (rejects f that is Ω(1) far w.p. Ω(1))

AKKLR Test

- Pick random d + 1 dim. subspace A;
- Reject iff $\deg(f|_A) > d$.

• I.e.,
$$\operatorname{Rej}(f) \coloneqq 2^{d+1} \cdot \delta^{d+1}(f)$$
.

- Why d + 1: Smallest dim. where some function is not of degree d
- AKKLR Analysis: Extends BLR naturally. (need to extend magical step).

XOR Lemma for Bias of Polynomials

Bias
$$(f) \coloneqq 1 - \left(\frac{q}{q-1}\right)\delta(f,g)$$

- XOR question: Let $F(x^1, ..., x^n) = f(x^1) + \dots + f(x^n)$. If $Bias(f) < 1 - \epsilon$ then is $Bias(F) \le exp(-n)$?
- Viola-Wigderson Thm: Yes .. Bias $(F) \le \exp\left(-\frac{\epsilon n}{2^d}\right)$
- Key ingredients in proof:
 - Bias is not directly multiplicative
 - But something called Gowers Norm is ...
 - Gowers norm nicely relates to AKKLR rejection probability, which relates to distance/bias ...

Extending + improving AKKLR

Extending beyond q = 2 : [KaufmanRon] +

[JutlaPatthakRudraZuckerman]: Query complexity $q^{O(\frac{a}{q})}$

- (magic becomes more complex)
- Improving analysis (q = 2):
 - Natural test: 0(2^d) queries
 - Analysis weak: Shows only $\delta(f) \le 2^d \cdot \operatorname{Rej}(f) = 4^d \cdot \delta^{d+1}(f)$
 - Optimal Analysis: [BhattacharyyaKoppartySchoenebeckS.Zuckerman] $\delta(f) = O\left(\delta^{d+1}(f)\right)$ unless $\delta^{d+1}(f) = \Omega\left(2^{-d}\right)$
- Improved analysis q > 2: [HaramatyShpilkaS.][KaufmanMinzer]

Main Insight

- [BKSSZ, HSS]: If $\delta(f)$ large then on all but $c_{q,d}$ hyperplanes H, $\delta(f|_H)$ large.
- (No explicit local decoder ...)
 - Example: d = 1 :"Linearity test"
 - Inductive Claim: $\delta(f) > .01 \Rightarrow \delta^{10}(f) > .001 \frac{5}{2m}$
 - Helpful claim: $\delta^{10}(f) > 3\delta(f)(1 \delta(f))$
 - If $H_1, ..., H_5$ s.t $\delta(f|_{H_i}) \le .01$ then $\delta(f) \le \frac{1}{8} + .03$
- [KM]: Small set expansion properties of the testing graph. (Many ideas adapted from the proof of 2-2 games conjecture [KhotMinzerSafra])

Some introspection: What made polys testable?

- Form linear error-correcting code; satisfy local constraints.
 - Motivated [Sipser-Spielman]!! But alas insufficient [BenSasson-Harsha-Raskhodnikova]
- Contained in nice tensor-codes.
 - Motivated [BenSasson-S] to study tensor codes
 - plays role in recent C³-LTCs of [DinurEvraLivneLubotzkyMozes]
- Enjoys Nice symmetries: "Affine-invariance"
 - [KaufmanS.] Seems to explain much of the success (a la BLR, RS, AKKLR, KR, JPRZ).
 - Demystifies "magic" ← "Row rank=column rank"
 - Can even extend BKSSZ/HSS [Haramaty-RonZewi-S.]
 - Not necessary. Can test $f: S^n \to \mathbb{F}$ [Bafna-Srinivasan-S.], [Amireddy-Srinivasan-S.]

Summary/Future questions

- Over three decades ... have developed a deep understanding of the local-global structure of polynomials
- Some future directions:
 - Explain everything in terms of affine-invariance?
 - Generalize to product property codes
 - LTCs to PCPs ... abstract expressivity?

Thank You!

Aug 14-16, 2023

WAC 2023: Low Degree Testing

31 of 31