Sparsification: Graphs, Codes, CSPs

Madhu Sudan

Harvard University

Joint work with
Sanjeev Khanna (Penn) and Aaron (Louie) Putterman (Harvard)

Sparsification

- Lossy compression \leq Sparsification \leq Compression
- Compression: $X \mapsto \operatorname{Comp}(X) \mapsto X$
- Noisy compression: $X \mapsto N C(X) \mapsto \tilde{X}$ s.t. $\delta(X, \tilde{X}) \rightarrow 0$
- Preserves most of poly(|X|) queries
- Sparsification (for class C of queries):

$$
X \mapsto \operatorname{Sparse}(X) \mapsto\{(1 \pm \epsilon) q(X)\}_{q \in C}
$$

- Approximately preserves all of $|C|$ queries (usually exponentially many)

Benczur-Karger Cut Sparsification

- Thm [Karger 94, BK97]: Every graph on n vertices can be sparsified to $\tilde{O}(n)$ bits while estimating all (2^{n-1}) cuts to within $1 \pm \epsilon$
- (Note - full information $=O\left(n^{2}\right)$ bits).
- Key ingredient: Karger's cut counting bound
- Lemma [K]: in unweighted graph G

$$
\#\{\text { cuts of size } \leq \alpha \cdot \backslash \operatorname{mincut}(G)\} \leq n^{2 \alpha}
$$

- Random sample of $\tilde{O}\left(\frac{m}{c}\right)$ edges suffices.
- [BK] Non-uniform sampling reduces to $\widetilde{O}(n)$ samples (How?)

What else can be sparsified?

- "Structure" := data + set of queries ...
- What other structures can be sparsified?
- Graph Laplacians wrt quadratic form queries
- Data $=L_{G} ;$ Query $=x \in R^{n} ;$ Ans: $x^{T} L_{G} x$
- Hypergraph Cut Sparsifiers
- Data $=(V, E)$; Query $=S \subseteq V$; Ans: $|E(S, \bar{S})|$
- SAT sparsifier
- Data = Sat formula; Query = assignment ; Ans = \# clauses satisfied by assignment.
- CSP(P) sparsifier? [Kogan-Krauthgamer]
- Data = P constraints on n vars ; Query = assignment ...
- [FK, BZ]: Classification of binary predicates with near linear sparsifiers
- XOR-SAT sparsifier?
- Data = XOR-SAT formula

This talk:

- Code sparsification (more generally - additive codes over abelian groups):
- Data = (generator matrix of) linear code.
- Query = message
- Ans = (Hamming) weight of its encoding.
- Motivation: Generalizes graph- and hypergraphsparsification.
- Applications to CSP sparsification:
- Classification of ternary Boolean CSPs
- Classification of all symmetric Boolean CSPs
- Classification* of all Boolean CSPs with nontrivial sparsification

Some theorems

- Thm 1: Every linear code $E: \mathbb{F}_{q}^{k} \rightarrow \mathbb{F}_{q}^{n}$ can be sparsified to $\tilde{O}\left(k^{2} \log ^{2} q\right)$ bits.
- More specifically, \exists weighted sample of $\widetilde{O}(k \log q)$ coordinates s.t. weighted hamming weights in sampled coordinates approximate original weight.
- Thm 2: Every code $E: \mathbb{Z}^{k} \rightarrow G^{n}$ can be sparsified to $\tilde{O}\left(k \log ^{2}|G|\right)$ coordinates, \forall abelian group G.
- Thm 3: Every degree t poly function $E: \mathbb{Z}^{k} \rightarrow G^{n}$ can be sparsified to $\widetilde{O}\left(k^{t} \log ^{2}|G|\right)$ coordinates

Some CSP theorems

- Thm 4: $\forall P:\{0,1\}^{3} \rightarrow\{0,1\} \operatorname{CSP}(P)$ is $\widetilde{O}\left(n^{t}\right)-$ sparsifiable iff P does not project to AND $_{t+1}$
- $P:\{0,1\}^{r} \rightarrow\{0,1\}$ projects to $Q:\{0,1\}^{s} \rightarrow\{0,1\}$ if $\exists \Pi:[r] \rightarrow\left\{Y_{1} \ldots Y_{s}\right\} \cup\left\{\bar{Y}_{1} \ldots \bar{Y}_{s}\right\} \cup\{0,1\}$ s.t. $Q\left(Y_{1} \ldots Y_{s}\right)=P(\Pi(1) \ldots \Pi(r))$
- Thm 5: \forall symmetric $P:\{0,1\}^{r} \rightarrow\{0,1\} \operatorname{CSP}(P)$ is near-linear sparsifiable iff $w t\left(P^{-1}(0)\right)$ form arithmetic progression.
- Thm 6: $\forall P:\{0,1\}^{r} \rightarrow\{0,1\} \operatorname{CSP}(P)$ is sparsifiable to $\widetilde{O}\left(n^{r-1}\right)$ constraints iff $\left|P^{-1}(1)\right| \geq 2$

Proofs

Graph Sparsification

Why does a random sample not work?

- Pick $\tilde{O}(n)$ constraints uniformly at random
- Output $\frac{m}{n}$. (\#"sampled \& satisfied" constraints)
- Gives additive ($\pm \epsilon m$) approximation;
- ... but not multiplicative ($1 \pm \epsilon$) approximation

Cut counting bound

- Fix a cut $S \mathrm{w} . \leq \alpha \cdot c$ edges
- Contract $n-1 \leq \frac{2 m}{c}$ random edges (till \#vertices $=2$)
- $\operatorname{Pr}[i$ th edge from end crosses $S] \leq \frac{2 \alpha \cdot c}{i \cdot c}=\frac{2 \alpha}{i}$
- $\operatorname{Pr}[$ no edge crosses $S] \geq \prod_{i}\left(1-\frac{2 \alpha}{i}\right) \geq n^{-2 \alpha}$
- $\operatorname{Pr}[S$ final cut $] \geq n^{-2 \alpha}$
- $\Rightarrow \#$ \{cuts $\mathrm{w} . \leq \alpha c$ edges $\} \leq n^{2 \alpha}$

Graph Sparsifiers from c.c. bound

- [K]: Sample $\frac{10 m}{c} \log n$ edges ...
- Pr [cut S of size αc not sampled well] $\leq n^{-10 \alpha}$
- $\operatorname{Pr}[\exists$ cut of size αc not sampled well $] \leq n^{-8 \alpha}$
- Now union over α
- [BK] Define strength of edges ; sample edges w.p. prop. to strength ...
- [Our simpler proof (loses log factors)]:
- Given G, let G_{0} be union of cuts of size $\sqrt{\frac{m}{c n}} ; G_{1} \ldots G_{t}$ be c.c.s of the rest;
- $m\left(G_{0}\right) \leq \sqrt{\frac{m n}{c}} ; \min -\operatorname{cut}\left(G_{i}\right) \geq \sqrt{\frac{m}{c n}} ; \frac{m}{c}$ better in all!
- Recurse+weight appropriately (by mincut)!

Code Sparsification

Code Sparsification

- Need an analog of cut counting bound ...
- "In every code C of min dist d, \#\{codewords of wt $\leq \alpha d\} \leq k^{\alpha "}$?
- Patently false: Asymptotically good code has
$d, k=\Omega(n)$, and so $2^{\Omega(n)}$ words of weight $O(d)$
(Aside: Hypergraph cut counting bound also fails similarly!! Obstacle to prior work.)
- But asymptotically good code is already sparsified! So not obstacle to sparsification.
- Needs a modified "cut counting bound"

Code counting Lemma

- Informally, every code has a good subcode supported on few coordinates, or satisfies Karger-style counting bound.
- Lemma: $\forall t \in \mathbb{Z}^{+}, C \subseteq \mathbb{F}_{q}^{n}$ we have:

1. $\forall \alpha \#\{$ codewords of wt $\leq \alpha \cdot t\} \leq q^{\alpha}\binom{n}{\alpha}$ OR
2. $\exists C^{\prime} \leq C$, s.t. $\left|\operatorname{supp}\left(C^{\prime}\right)\right| \leq \operatorname{dim}\left(C^{\prime}\right) \cdot t$

- Corollary: $\forall t \in \mathbb{Z}^{+}, C \subseteq \mathbb{F}_{q}^{n}, \exists S \subseteq[n],|S| \leq \operatorname{dim}(C), t$ s.t. $\forall \alpha \#\left\{\right.$ codewords of $\left.C\right|_{\bar{S}}$ of wt $\left.\leq \alpha \cdot t\right\} \leq q^{\alpha}\binom{n}{\alpha}$

Code Counting \Rightarrow Sparsification

- Sparsify(C)
- Let $t=\sqrt{\frac{n}{k}}$ where $k=\operatorname{dim} C$
- Apply Corollary and let $C_{1}=\left.C\right|_{S}$ and $C_{2}=\left.C\right|_{\bar{S}}$
- Return $\operatorname{Sparsify}\left(C_{1}\right) \cup \sqrt{t} \cdot \operatorname{Sparsify}\left(C_{2}\right)$
- QED

Proof of Code Counting

- Contract (C, t) :
- If $|\operatorname{supp}(C)| \leq t \cdot \operatorname{dim}(C)$ stop "Case 2";
- If $\operatorname{dim} C>\alpha$
- Pick random coord. $j \in[n]$ s.t. $\left.C\right|_{\{j\}} \neq 0$
- $C^{\prime}=C-\left\{c \in C\right.$ s.t. $\left.c_{j} \neq 0\right\}$
- Contract $\left(C^{\prime}, t\right)$
- Else, output "Case 1 " + random codeword of C
- Fix word $c \in C$ of weight $\leq \alpha t$
- $\operatorname{Pr}\left[c \notin C^{\prime}\right] \leq \frac{\alpha}{\operatorname{dim}(C)}$
- $\Rightarrow \operatorname{Pr}[c$ survives and output at end $] \geq\binom{ n}{\alpha}^{-1} q^{-\alpha}$.

Implications + Extensions

Hypergraph Sparsification

- Hypergraph: Say r-uniform hypergraph on n vertices. Edge e cut by (S, \bar{S}) if $e \cap S, e \cap \bar{S} \neq \phi$.
- Q: $\exists \widetilde{O}(n)$ hypergraph cut sparsifiers?
- [KK'15]: $\tilde{O}(n r)$ - sparsifiers exist
- [CKN'20] Improve to Õ(n)
- Our proof:
- Let $q \approx n$ prime, map edge e to row vector in \mathbb{F}_{q}^{n} with nnz entries $(1,1,1, \ldots-(r-1))$
- Consider code generated by columns of matrix with a row for each edge.
- Sparsifying code sparsifies hypergraph!

Variations

- Can sparsify codes $E: \mathbb{Z}^{k} \rightarrow G^{n}$, for finite abelian group G, to $\tilde{O}(k \log G)$ rows.
- Proof: Some linear algebra breaks down. Replace dimension etc with actual counts, Gaussian elimination with HNF.
- Can sparsify degree t maps $P: \mathbb{Z}^{k} \rightarrow G^{n}$ to $\widetilde{o}\left(k^{t} \log G\right)$ coordinates.
- Applications:
- Classify all symmetric Boolean CSPs with near linear sparsification
- Classify all r-ary Boolean CSPs with $o\left(n^{r}\right)$-sparsification.

Open Questions

- Sparsification results non-constructive!
- Open: Construct polytime algorithm to find sparsification?
- Given code C and integer t find support of a high-rate subcode C^{\prime} ?
- CSP Classification:
- Only upper bound tool: our group-basedpolynomial sparsifier
- Only lower bound tool: Projection to t-AND.
- The two don't meet $\cdot($
- New ideas?

Thank You!

