Sparsification: Graphs, Codes, CSPs

Madhu Sudan
Harvard University

Joint work with
Sanjeev Khanna (Penn) and Aaron (Louie) Putterman (Harvard)
Sparsification

- Lossy compression \leq Sparsification \leq Compression

- Compression: $X \mapsto \text{Comp}(X) \mapsto X$

- Noisy compression: $X \mapsto \text{NC}(X) \mapsto \tilde{X}$ s.t. $\delta(X, \tilde{X}) \rightarrow 0$
 - Preserves most of $\text{poly}(|X|)$ queries

- Sparsification (for class C of queries):
 $X \mapsto \text{Sparse}(X) \mapsto \{(1 \pm \epsilon)q(X)\}_{q \in C}$
 - Approximately preserves all of $|C|$ queries (usually exponentially many)
Benczur-Karger Cut Sparsification

- Thm [Karger 94, BK97]: Every graph on \(n \) vertices can be sparsified to \(\tilde{O}(n) \) bits while estimating all \((2^n - 1)\) cuts to within \(1 \pm \epsilon \)
 - (Note – full information = \(O(n^2) \) bits).
- Key ingredient: Karger’s cut counting bound
- Lemma [K]: in unweighted graph \(G \)
 \[
 \# \{ \text{cuts of size } \leq \alpha \cdot \mincut(G) \} \leq n^{2\alpha}
 \]
- Random sample of \(\tilde{O}\left(\frac{m}{c}\right) \) edges suffices.
- [BK] Non-uniform sampling reduces to \(\tilde{O}(n) \) samples (How?)
What else can be sparsified?

- “Structure” \(: = \) data + set of queries ...
- What other structures can be sparsified?
 - Graph Laplacians wrt quadratic form queries
 - Data = \(L_G\) ; Query = \(x \in \mathbb{R}^n\) ; Ans: \(x^T L_G x\)
 - Hypergraph Cut Sparsifiers
 - Data = \((V, E)\) ; Query = \(S \subseteq V\) ; Ans: \(|E(S, \bar{S})|\)
 - SAT sparsifier
 - Data = Sat formula; Query = assignment ; Ans = \# clauses satisfied by assignment.
 - CSP(P) sparsifier? [Kogan-Krauthgamer]
 - Data = P constraints on n vars ; Query = assignment ...
 - [FK, BZ]: Classification of binary predicates with near linear sparsifiers
 - XOR-SAT sparsifier?
 - Data = XOR-SAT formula
This talk:

- Code sparsification (more generally – additive codes over abelian groups):
 - Data = (generator matrix of) linear code.
 - Query = message
 - Ans = (Hamming) weight of its encoding.

- Motivation: Generalizes graph- and hypergraph-sparsification.

- Applications to CSP sparsification:
 - Classification of ternary Boolean CSPs
 - Classification of all symmetric Boolean CSPs
 - Classification* of all Boolean CSPs with non-trivial sparsification
Some theorems

- **Thm 1**: Every linear code $E: \mathbb{F}_q^k \rightarrow \mathbb{F}_q^n$ can be sparsified to $\tilde{O}(k^2 \log^2 q)$ bits.

 - More specifically, \exists weighted sample of $\tilde{O}(k \log q)$ coordinates s.t. weighted hamming weights in sampled coordinates approximate original weight.

- **Thm 2**: Every code $E: \mathbb{Z}^k \rightarrow G^n$ can be sparsified to $\tilde{O}(k \log^2 |G|)$ coordinates, \forall abelian group G.

- **Thm 3**: Every degree t poly function $E: \mathbb{Z}^k \rightarrow G^n$ can be sparsified to $\tilde{O}(k^t \log^2 |G|)$ coordinates.
Some CSP theorems

- **Thm 4:** \(\forall P: \{0,1\}^3 \rightarrow \{0,1\} \) CSP(P) is \(\tilde{O}(n^t) \)-sparsifiable iff \(P \) does not project to \(\text{AND}_{t+1} \)
 - \(P: \{0,1\}^r \rightarrow \{0,1\} \) projects to \(Q: \{0,1\}^s \rightarrow \{0,1\} \) if
 \(\exists \Pi: [r] \rightarrow \{Y_1 \ldots Y_s\} \cup \{\overline{Y_1} \ldots \overline{Y_s}\} \cup \{0,1\} \) s.t.
 \[Q(Y_1 \ldots Y_s) = P(\Pi(1) \ldots \Pi(r)) \]

- **Thm 5:** \(\forall \) symmetric \(P: \{0,1\}^r \rightarrow \{0,1\} \) CSP(P) is near-linear sparsifiable iff \(wt(P^{-1}(0)) \) form arithmetic progression.

- **Thm 6:** \(\forall P: \{0,1\}^r \rightarrow \{0,1\} \) CSP(P) is sparsifiable to \(\tilde{O}(n^{r-1}) \) constraints iff \(|P^{-1}(1)| \geq 2 \)
Proofs
Graph Sparsification
Why does a random sample not work?

- Pick $\tilde{O}(n)$ constraints uniformly at random
- Output $\frac{m}{n}$. (#"sampled & satisfied" constraints)

- Gives additive $(\pm \epsilon m)$ approximation;
- ... but not multiplicative $(1 \pm \epsilon)$ approximation
Cut counting bound

- Fix a cut S w. $\leq \alpha \cdot c$ edges
- Contract $n - 1 \leq \frac{2m}{c}$ random edges (till #vertices = 2)
- $\Pr[$ith edge from end crosses $S]$ $\leq \frac{2\alpha \cdot c}{i \cdot c} = \frac{2\alpha}{i}$
- $\Pr[$no edge crosses $S]$ $\geq \prod_i \left(1 - \frac{2\alpha}{i}\right) \geq n^{-2\alpha}$
- $\Pr[S \text{ final cut}] \geq n^{-2\alpha}$
- \Rightarrow # {cuts w. $\leq \alpha c$ edges} $\leq n^{2\alpha}$
Graph Sparsifiers from c.c. bound

- [K]: Sample $\frac{10m}{c} \log n$ edges ...
 - $\Pr[\text{cut } S \text{ of size } \alpha c \text{ not sampled well}] \leq n^{-10\alpha}$
 - $\Pr[\exists \text{ cut of size } \alpha c \text{ not sampled well}] \leq n^{-8\alpha}$
 - Now union over α

- [BK] Define strength of edges; sample edges w.p. prop. to strength ...

- [Our simpler proof (loses log factors)]:
 - Given G, let G_0 be union of cuts of size $\frac{\sqrt{mn}}{cn}$; $G_1 \ldots G_t$ be c.c.s of the rest;
 - $m(G_0) \leq \frac{\sqrt{mn}}{c}$; $\min - \text{cut}(G_i) \geq \frac{\sqrt{mn}}{cn}$; $\frac{m}{c}$ better in all!
 - Recurse+weight appropriately (by mincut)!
Code Sparsification
Code Sparsification

- Need an analog of cut counting bound ...
 - “In every code C of min dist d,
 \[\# \{ \text{codewords of wt} \leq \alpha d \} \leq k^\alpha \] ?
- Patently false: Asymptotically good code has $d, k = \Omega(n)$, and so $2^{\Omega(n)}$ words of weight $O(d)$
 (Aside: Hypergraph cut counting bound also fails similarly!! Obstacle to prior work.)
- But asymptotically good code is already sparsified! So not obstacle to sparsification.
- Needs a modified “cut counting bound”
Code counting Lemma

- Informally, every code has a good subcode supported on few coordinates, or satisfies Karger-style counting bound.

- Lemma: \(\forall t \in \mathbb{Z}^+, C \subseteq \mathbb{F}_q^n \) we have:
 1. \(\forall \alpha \# \{ \text{codewords of } \text{wt} \leq \alpha \cdot t \} \leq q^{\alpha \binom{n}{\alpha}} \) OR
 2. \(\exists C' \leq C, \text{ s.t. } |\text{supp}(C')| \leq \dim(C') \cdot t \)

- Corollary: \(\forall t \in \mathbb{Z}^+, C \subseteq \mathbb{F}_q^n, \exists S \subseteq [n], |S| \leq \dim(C) \cdot t \) s.t.
 \(\forall \alpha \# \{ \text{codewords of } C|_S \text{ of } \text{wt} \leq \alpha \cdot t \} \leq q^{\alpha \binom{n}{\alpha}} \)
Code Counting ⇒ Sparsification

- Sparsify(C)
 - Let $t = \sqrt{\frac{n}{k}}$ where $k = \dim C$
 - Apply Corollary and let $C_1 = C|_S$ and $C_2 = C|_{\bar{S}}$
 - Return $\text{Sparsify}(C_1) \cup \sqrt{t} \cdot \text{Sparsify}(C_2)$
 - QED
Proof of Code Counting

- Contract(C, t):
 - If $\text{supp}(C) \leq t \cdot \dim(C)$ stop “Case 2”;
 - If $\dim C > \alpha$
 - Pick random coord. $j \in [n]$ s.t. $C|_j \neq 0$
 - $C' = C - \{c \in C \text{ s.t. } c_j \neq 0\}$
 - Contract(C', t)
 - Else, output “Case 1” + random codeword of C
 - Fix word $c \in C$ of weight $\leq \alpha t$
 - $\Pr[c \notin C'] \leq \frac{\alpha}{\dim(C)}$
 - $\Rightarrow \Pr[c \text{ survives and output at end}] \geq (\frac{n}{\alpha})^{-1} q^{-\alpha}$.

Dec 11, 2023 Sparsification @ TIFR 17 of 22
Implications + Extensions
Hypergraph Sparsification

- Hypergraph: Say r-uniform hypergraph on n vertices. Edge e cut by (S, \overline{S}) if $e \cap S, e \cap \overline{S} \neq \emptyset$.
- Q: $\exists \tilde{O}(n)$ hypergraph cut sparsifiers?
 - [KK’15]: $\tilde{O}(nr)$-sparsifiers exist
 - [CKN’20] Improve to $\tilde{O}(n)$
- Our proof:
 - Let $q \approx n$ prime, map edge e to row vector in \mathbb{F}_q^n with nnz entries $(1,1,1, \ldots - (r - 1))$
 - Consider code generated by columns of matrix with a row for each edge.
 - Sparsifying code sparsifies hypergraph!
Variations

- Can sparsify codes $E: \mathbb{Z}^k \rightarrow G^n$, for finite abelian group G, to $\tilde{O}(k \log G)$ rows.
 - Proof: Some linear algebra breaks down. Replace dimension etc with actual counts, Gaussian elimination with HNF.

- Can sparsify degree t maps $P: \mathbb{Z}^k \rightarrow G^n$ to $\tilde{O}(k^t \log G)$ coordinates.

- Applications:
 - Classify all symmetric Boolean CSPs with near linear sparsification
 - Classify all r-ary Boolean CSPs with $o(n^r)$-sparsification.
Open Questions

- **Sparsification results non-constructive!**
 - Open: Construct polytime algorithm to find sparsification?
 - Given code C and integer t find support of a high-rate subcode C'?

- **CSP Classification:**
 - Only upper bound tool: our group-based-polynomial sparsifier
 - Only lower bound tool: Projection to t-AND.
 - The two don’t meet 😞
 - New ideas?
Thank You!