Local Correction of Linear Functions on the Boolean Cube

Prashanth Amireddy (Harvard)

Amik Raj Behara (Aarhus)

Manaswi Paraashar (Aarhus)

Srikanth Srinivasan (Copenhagen)

Madhu Sudan (Harvard)

TIFR: Local Correction on Cube

The Problem(s)

- Given oracle access to $f: S^n \to \mathbb{F}$, and $a \in S^n$, compute P(a)
 - Where $P(\cdot)$ is the (unique) linear function at dist. $\delta < \frac{1}{4}$ from f. $\delta(f,g) \coloneqq \Pr_{b \in uS^n}[f(b) \neq g(b)]$
 - While minimizing #queries to f
 - Local Correction of linear functions"
- List-Local Correction:
 - $\delta(f, P) \rightarrow 1 \frac{1}{|S|}$; L not uniquely defined but can hope for
 - List size to be small if $\delta(f, P) < 1 \frac{1}{|S|} \epsilon$
 - If so ... provide oracle access to all such P₁, P₂, ..., P_L

The results

- Consider: $S = \{0,1\}$; arbitrary \mathbb{F} (or even arbitrary abelian G)
- Thm 1: Local Corrector: Can compute P(a) when $\delta(f,P) < \frac{1}{4} \epsilon$ making $\tilde{O}_{\epsilon}(\log n)$ queries.
- Thm 2: List-decoding bound: There are at most $poly(\epsilon^{-1})$ linear functions *P* with $\delta(P, f) \leq \frac{1}{2} \epsilon$
- Thm 3: Can be locally list-decoded with $\tilde{O}_{\epsilon}(\log n)$ queries.

Motivation/Context

- (Mainly mathematical)
- Context 1: Ore-"DeMillo-Lipton-Schwartz-Zippel" Lemma
 - Class of polynomials $f: S^n \to \mathbb{F}$ of degree *d* form code of relative distance $\delta = \delta(|S|, d) > 0$ independent of *n*
 - Locally correctable if $S = \mathbb{F}$; what if not?
 - Many common tools (affine-change of basis) unavailable ... what are replacements?
- Context 2: Locally correctable codes over reals ...
 - Unknown if there exists one that is correctable with O(1) queries and Ω(1) fraction error for every message length k
 - Our work gives first code with o(k) queries

Part 1: Decoding from $\frac{1}{4} - \epsilon$ **fraction errors**

3 Step approach:

- Construct a sequence of "oracles": $f \to f_1 \to f_2 \to P$
- Step 1: f → f₁ : where δ(f₁, P) < τ for any constant τ
 Oracle for f₁ makes 0_{τ,ε}(1) calls to oracle for f

• Step 2:
$$f_1 \rightarrow f_2$$
 : where $\delta(f_2, P) = O\left(\frac{1}{\operatorname{poly}\log n}\right)$

- Oracle for f_2 makes $O(\operatorname{poly} \log \log n)$ queries to f_1
- Step 3: $f_2 \rightarrow P$:
 - Oracle for *P* makes $\tilde{O}(\log n)$ queries to f_2

Step 1

- Key to Step 1 (and Step 2): Only need to recover P(a) for random a (whp)
- Def: Cube *C* containing *a* given by function $h: [n] \rightarrow [k]$ and contains all points $\{a \bigoplus (y_{h(1)} \dots y_{h(n)}) \mid y_1 \dots y_k \in \{0,1\}\}$
- Small set expansion of noisy hypercube (aka hypercontractivity)
 ⇒ Cube is a good sampler of {0,1}ⁿ for random a
 - \Rightarrow Cube has roughly $\frac{1}{4} \epsilon$ fraction errors.
 - ⇒ Can brute force decode $f|_C$; $k = O(1) \Rightarrow #queries = O(1)$; Error depends on prob. Sampler not good ... goes → 0 as $k \rightarrow \infty$

Step 3:

- To compute, say, $P(1^n)$:
 - Find $v_1 \dots v_{\log n} \in \{0,1\}^n$ and $\alpha_1 \dots \alpha_{\log n} \in \mathbb{Z}$ s.t.
 - Each v_i roughly balanced $(\frac{1}{2} \pm \frac{1}{\sqrt{n}})$ -fraction 1s.
 - $\sum_i \alpha_i = 1$
 - $\sum_i \alpha_i v_i = 1^n$
 - Output $\sum_i f(v_i)$
- Key claim: Such v_i 's and α_i 's exist.
 - Proof: Constructive.
- Aside: Proof sort of "converse" to a result from prev paper by Bafna-Srinivasan-S who show $\widehat{\Omega}(\log n)$ necessary.

Step 2:

- (Most novel/intricate?)
- Key idea:
 - There exists an O(1)-query error reducer: $g_1 \rightarrow g_2$, i.e.,
 - g_2 makes O(1)-queries to g_1
 - $\bullet \, \delta(g_2, P) = O(\delta(g_1, P)^2)$
 - Proof: Maybe on board?
 - Repeat $k = O(\log \log \log n)$ times
 - Queries $\exp(k) = O(\operatorname{poly} \log \log n)$

• Error =
$$\exp(-\exp(k)) = O\left(\frac{1}{\log n}\right)$$

Part 2: List-Decodability from $\frac{1}{2} - \epsilon$ **fraction errors**

May 28, 2024

Overview

Recall main theorem:

- For every $f: \{0,1\}^n \to \mathbb{F}$ and every $\epsilon > 0$ there exist at most poly $(\frac{1}{\epsilon})$ linear functions *P* s.t. $\delta(f, P) \le \frac{1}{2} - \epsilon$
- Actually prove it for functions mapping to any abelian group G
 - Many steps and cases ...
 - Step 0: Reduce to case of finite group G (size depends on n)
 - Let G = G₂ × G₃ × G₀ (G_p p-group; G₀ all elements have order at least 5)
 - Tackle each case separately; Combining easy

The G₀ case

Substeps:

- If $P_1, ..., P_L$ all $\frac{1}{2} \epsilon$ -close to f then there exist $t = \Omega(L)$ polynomials among them that are all $\frac{3}{4} + .0001$ -close to one of them.
- Say $P_1 \dots P_t$ close to P_1
- For every $i \in [t]$, $P_i P_1$ is a sparse polynomial depending only on O(1) variables.
- Extreme cases:
 - All $P_i P_1$'s depend on poly $\left(\frac{1}{\epsilon}\right)$ variables ... easy to count
 - P_i 's depend on disjoint set of variables ... unlikely to agree
- General case ... reduces to combination of extreme cases

May 28, 2024

The G₂ & G₃ cases

- G_2 case essentially known ... but new proof in this paper.
- Unified with G₃ case; main ingredients
 - **Extended Johnson Bound for ranges** \mathbb{Z}_2 and \mathbb{Z}_3
 - "Special Intersection Properties" of agreement sets to lift results to G₂, G₃

Extended Johnson Bound

• Extended Johnson Bound: $\exists C \text{ s.t. if } \delta(f, P_i) \leq \frac{1}{2} - \epsilon_i \text{ then } \sum_i \epsilon_i^C \leq 1$

- \mathbb{Z}_2 case is the standard one
- \mathbb{Z}_3 case uses Fourier analysis + some sparsity ...
 - Specifically: There are at most 31 "highly distinct" polynomials that are at distance at most $\frac{1}{2}$ from f. (proved using Fourier analysis)
 - "Highly distinct" = differ on six variables.
 - Now proceed in manner similar to G_0 ...

Special Intersection Properties [DGKS]

- Suppose $f: \{0,1\}^n \to G \times H$... so $f = (f_G, f_H)$
- Suppose $P_1 \dots P_L$ have significant agreement with f_G ; let

 $S_i \coloneqq \{a \in \{0,1\}^n | f(a) = P_i(a)\} \text{ and } \delta(P_i, f_G) = \frac{1}{2} - \epsilon_i, \text{ so } |S_i| = 2^n \left(\frac{1}{2} + \epsilon_i\right)$

- How can this list become larger when looking at f?
 - Each P_i might extend to several P_{ij} 's with agreement on sets S_{ij} with size $2^n \left(\frac{1}{2} + \epsilon_{ij}\right)$
 - Suppose S_i 's satisfy extended Johnson i.e., $\sum_i \epsilon_i^D \leq 1$
 - Under what condition can you show $\sum_{ij} \epsilon_{ij}^{D} \leq 1$?
 - Turns out S_{ij}'s have special intersection properties and this can be exploited.

May 28, 2024

S.I.P. (contd.)

- $S_1 \dots S_m$ have (ρ, τ, C) –special intersection properties if:
 - $\mu(S_i) \ge \rho$
 - $\mu(S_i \cap S_j) \le \rho$
 - Extended Johnson Bound applies: $\mu(S_i) = \rho + \epsilon_i \Rightarrow \sum_i \epsilon_i^C \le 1$
 - (Property τ): for $I \subseteq [m]$ let $S_I = \bigcap_{i \in I} S_i$. If $\mu(S_I) > \tau$ then $\forall J \subseteq I$ with |J| = 2, $S_J = S_I$ ($\mu(S_I) > \tau \Rightarrow \{S_i | i \in I\}$ form sunflower)
- DGKS Thm (specialized to example from previous page):
 - $\forall C \exists D \text{ If for every } i, \{S_{ij}\}_i \text{ form a } \left(\frac{1}{2}, \frac{1}{4}, C\right) \text{-SIP then } \sum_j \epsilon_{ij}^D \leq \epsilon_i^D$
 - Note that to prove EJB for $\{P_{ij}\}_i$ we can look only at f_H !

Brief aside on use of SIP

- DGKS roughly apply it once to lift from Z₂ to Z_{2^t} and once more (say) to Z^s_{2^t}
 - Works fine, gets worse exponent D
- Our new application: directly works with $G \mod H$ and H (even when $G \neq (G \mod H) \times H$): so a single lifting step gets to $\mathbb{Z}_{2^t}^s$

Part 3: Algorithmic List-Decoding

- Develops idea from S., Trevisan, Vadhan
- To compute $P_1(a) \dots P_L(a)$: can find a random cube C containing a;
- But how to construct an oracle that consistently outputs values of say P₁?
- Idea: Use $P_1|_{\hat{C}}$ as advice.
 - **Now decode at** a using random cube C that contains a and \hat{C}
 - Leads to some non-trivial complications, but ... all ends well.

Summary

- Considered: $S = \{0,1\}$; arbitrary \mathbb{F} (or even arbitrary abelian G)
- Thm 1: Local Corrector: Can compute P(a) when $\delta(f,P) < \frac{1}{4} \epsilon$ making $\tilde{O}_{\epsilon}(\log n)$ queries.
- Thm 2: List-decoding bound: There are at most $poly(\epsilon^{-1})$ linear functions *P* with $\delta(P, f) \le \frac{1}{2} \epsilon$
- Thm 3: Can be locally list-decoded with $\tilde{O}_{\epsilon}(\log n)$ queries.
- Natural directions:
 - Higher degree? Larger S?
 - Better LCCs over reals?

Thank you!