Local Correction of Linear Functions on the Boolean Cube

Prashanth Amireddy (Harvard)

Amik Raj Behara (Aarhus)

Manaswì Paraashar (Aarhus)

Srikanth Srinivasan (Copenhagen)

Madhu Sudan (Harvard)

The Problem(s)

- Given oracle access to $f: S^{n} \rightarrow \mathbb{F}$, and $a \in S^{n}$, compute $P(a)$
- Where $P(\cdot)$ is the (unique) linear function at dist. $\delta<\frac{1}{4}$ from f.

$$
\delta(f, g):=\operatorname{Pr}_{b \in \in_{U} S^{n}}[f(b) \neq g(b)]
$$

- While minimizing \#queries to f
- "Local Correction of linear functions"
- List-Local Correction:
- $\delta(f, P) \rightarrow 1-\frac{1}{|S|} ; L$ not uniquely defined - but can hope for
- List size to be small if $\delta(f, P)<1-\frac{1}{|S|}-\epsilon$
- If so ... provide oracle access to all such $P_{1}, P_{2}, \ldots, P_{L}$

The results

- Consider: $S=\{0,1\}$; arbitrary \mathbb{F} (or even arbitrary abelian G)
- Thm 1: Local Corrector: Can compute $P(a)$ when $\delta(f, P)<\frac{1}{4}-\epsilon$ making $\tilde{O}_{\epsilon}(\log n)$ queries.
- Thm 2: List-decoding bound: There are at most poly $\left(\epsilon^{-1}\right)$ linear functions P with $\delta(P, f) \leq \frac{1}{2}-\epsilon$
- Thm 3: Can be locally list-decoded with $\tilde{O}_{\epsilon}(\log n)$ queries.

Motivation/Context

- (Mainly mathematical)
- Context 1: Ore-"DeMillo-Lipton-Schwartz-Zippel" Lemma
- Class of polynomials $f: S^{n} \rightarrow \mathbb{F}$ of degree d form code of relative distance $\delta=\delta(|S|, d)>0$ independent of n
- Locally correctable if $S=\mathbb{F}$; what if not?
- Many common tools (affine-change of basis) unavailable ... what are replacements?
- Context 2: Locally correctable codes over reals ...
- Unknown if there exists one that is correctable with $\mathrm{O}(1)$ queries and $\Omega(1)$ fraction error for every message length k
- Our work - gives first code with $o(k)$ queries

Part 1: Decoding from $\frac{1}{4}-\epsilon$ fraction errors

3 Step approach:

- Construct a sequence of "oracles": $f \rightarrow f_{1} \rightarrow f_{2} \rightarrow P$
- Step 1: $f \rightarrow f_{1}$: where $\delta\left(f_{1}, P\right)<\tau$ for any constant τ
- Oracle for f_{1} makes $O_{\tau, \epsilon}(1)$ calls to oracle for f
- Step 2: $f_{1} \rightarrow f_{2}$: where $\delta\left(f_{2}, P\right)=O\left(\frac{1}{\text { poly } \log n}\right)$
- Oracle for f_{2} makes $O($ poly $\log \log n)$ queries to f_{1}
- Step 3: $f_{2} \rightarrow P$:
- Oracle for P makes $\tilde{O}(\log n)$ queries to f_{2}

Step 1

- Key to Step 1 (and Step 2): Only need to recover $P(a)$ for random a (whp)
- Def: Cube C containing a given by function $h:[n] \rightarrow[k]$ and contains all points $\left\{a \oplus\left(y_{h(1)} \ldots y_{h(n)}\right) \mid y_{1} \ldots y_{k} \in\{0,1\}\right\}$
- Small set expansion of noisy hypercube (aka hypercontractivity)
\Rightarrow Cube is a good sampler of $\{0,1\}^{n}$ for random a
\Rightarrow Cube has roughly $\frac{1}{4}-\epsilon$ fraction errors.
\Rightarrow Can brute force decode $\left.f\right|_{C} ; k=O(1) \Rightarrow$ \#queries $=O(1)$; Error depends on prob. Sampler not good ... goes $\rightarrow 0$ as $k \rightarrow \infty$

Step 3:

- To compute, say, $P\left(1^{n}\right)$:
- Find $v_{1} \ldots v_{\log n} \in\{0,1\}^{n}$ and $\alpha_{1} \ldots \alpha_{\log n} \in \mathbb{Z}$ s.t.
- Each v_{i} roughly balanced $\left(\frac{1}{2} \pm \frac{1}{\sqrt{n}}\right)$-fraction 1 s .
- $\sum_{i} \alpha_{i}=1$
- $\sum_{i} \alpha_{i} v_{i}=1^{n}$
- Output $\sum_{i} f\left(v_{i}\right)$
- Key claim: Such $v_{i}{ }^{\prime}$ s and $\alpha_{i}{ }^{\prime}$'s exist.
- Proof: Constructive.
- Aside: Proof sort of "converse" to a result from prev paper by Bafna-Srinivasan-S who show $\widetilde{\Omega}(\log n)$ necessary.

Step 2:

- (Most novel/intricate?)
- Key idea:
- There exists an O (1)-query error reducer: $g_{1} \rightarrow g_{2}$, i.e.,
- g_{2} makes $O(1)$-queries to g_{1}
- $\delta\left(g_{2}, P\right)=O\left(\delta\left(g_{1}, P\right)^{2}\right)$
- Proof: Maybe on board?
- Repeat $k=O(\log \log \log n)$ times
- Queries $\exp (k)=O$ (poly $\log \log n$)
- Error $=\exp (-\exp (k))=O\left(\frac{1}{\log n}\right)$

Part 2: List-Decodability from $\frac{1}{2}-\epsilon$ fraction errors

Overview

- Recall main theorem:
- For every $f:\{0,1\}^{n} \rightarrow \mathbb{F}$ and every $\epsilon>0$ there exist at most poly $\left(\frac{1}{\epsilon}\right)$ linear functions P s.t. $\delta(f, P) \leq \frac{1}{2}-\epsilon$
- Actually prove it for functions mapping to any abelian group G
- Many steps and cases ...
- Step 0: Reduce to case of finite group G (size depends on n)
- Let $G=G_{2} \times G_{3} \times G_{0}$ ($G_{p} p$-group; G_{0} all elements have order at least 5)
- Tackle each case separately; Combining easy

The G_{0} case

- Substeps:
- If P_{1}, \ldots, P_{L} all $\frac{1}{2}-\epsilon$-close to f then there exist $t=\Omega(L)$ polynomials among them that are all $\frac{3}{4}+.0001$-close to one of them.
- Say $P_{1} \ldots P_{t}$ close to P_{1}
- For every $i \in[t], \quad P_{i}-P_{1}$ is a sparse polynomial depending only on $O(1)$ variables.
- Extreme cases:
- All $P_{i}-P_{1}$'s depend on poly $\left(\frac{1}{\epsilon}\right)$ variables ... easy to count
- P_{i} 's depend on disjoint set of variables ... unlikely to agree
- General case ... reduces to combination of extreme cases

The $G_{2} \& G_{3}$ cases

- G_{2} case essentially known ... but new proof in this paper.
- Unified with G_{3} case; main ingredients
- Extended Johnson Bound for ranges \mathbb{Z}_{2} and \mathbb{Z}_{3}
- "Special Intersection Properties" of agreement sets to lift results to G_{2}, G_{3}

Extended Johnson Bound

- Extended Johnson Bound: $\exists C$ s.t. if $\delta\left(f, P_{i}\right) \leq \frac{1}{2}-\epsilon_{i}$ then $\sum_{i} \epsilon_{i}^{C} \leq 1$
- \mathbb{Z}_{2} case is the standard one
- \mathbb{Z}_{3} case uses Fourier analysis + some sparsity ...
- Specifically: There are at most 31 "highly distinct" polynomials that are at distance at most $\frac{1}{2}$ from f. (proved using Fourier analysis)
- "Highly distinct" := differ on six variables.
- Now proceed in manner similar to $G_{0} \ldots$

Special Intersection Properties [DGKS]

- Suppose $f:\{0,1\}^{n} \rightarrow G \times H \ldots$ so $f=\left(f_{G}, f_{H}\right)$
- Suppose $P_{1} \ldots P_{L}$ have significant agreement with f_{G}; let

$$
S_{i}:=\left\{a \in\{0,1\}^{n} \mid f(a)=P_{i}(a)\right\} \text { and } \delta\left(P_{i}, f_{G}\right)=\frac{1}{2}-\epsilon_{i}, \text { so }\left|S_{i}\right|=2^{n}\left(\frac{1}{2}+\epsilon_{i}\right)
$$

- How can this list become larger when looking at f ?
- Each P_{i} might extend to several $P_{i j}$'s with agreement on sets $S_{i j}$ with size $2^{n}\left(\frac{1}{2}+\epsilon_{i j}\right)$
- Suppose S_{i} 's satisfy extended Johnson i.e., $\sum_{i} \epsilon_{i}^{D} \leq 1$
- Under what condition can you show $\sum_{i j} \epsilon_{i j}^{D} \leq 1$?
- Turns out $S_{i j}$'s have special intersection properties and this can be exploited.

S.I.P. (contd.)

- $S_{1} \ldots S_{m}$ have (ρ, τ, C) -special intersection properties if:
- $\mu\left(S_{i}\right) \geq \rho$
- $\mu\left(S_{i} \cap S_{j}\right) \leq \rho$
- Extended Johnson Bound applies: $\mu\left(S_{i}\right)=\rho+\epsilon_{i} \Rightarrow \sum_{i} \epsilon_{i}^{C} \leq 1$
- (Property τ): for $I \subseteq[m]$ let $S_{I}=\cap_{i \in I} S_{i}$. If $\mu\left(S_{I}\right)>\tau$ then $\forall J \subseteq I$ with $|J|=2, S_{J}=S_{I} \quad\left(\mu\left(S_{I}\right)>\tau \Rightarrow\left\{S_{i} \mid i \in I\right\}\right.$ form sunflower)
- DGKS Thm (specialized to example from previous page):
- $\forall C \exists D$ If for every $i,\left\{S_{i j}\right\}_{j}$ form a $\left(\frac{1}{2}, \frac{1}{4}, C\right)$-SIP then $\sum_{j} \epsilon_{i j}^{D} \leq \epsilon_{i}^{D}$
- Note that to prove EJB for $\left\{P_{i j}\right\}_{j}$ we can look only at f_{H} !

Brief aside on use of SIP

- DGKS - roughly apply it once to lift from \mathbb{Z}_{2} to $\mathbb{Z}_{2^{t}}$ and once more (say) to $\mathbb{Z}_{2^{t}}^{s}$
- Works fine, gets worse exponent D
- Our new application: directly works with G mod H and H (even when $G \neq(G \bmod H) \times H)$: so a single lifting step gets to $\mathbb{Z}_{2^{t}}^{s}$

Part 3: Algorithmic List-Decoding

- Develops idea from S.,Trevisan,Vadhan
- To compute $P_{1}(a) \ldots P_{L}(a)$: can find a random cube C containing a;
- But how to construct an oracle that consistently outputs values of say P_{1} ?
- Idea: Use $\left.P_{1}\right|_{\hat{C}}$ as advice.
- Now decode at a using random cube C that contains a and \hat{C}
- Leads to some non-trivial complications, but ... all ends well.

Summary

- Considered: $S=\{0,1\}$; arbitrary \mathbb{F} (or even arbitrary abelian G)
- Thm 1: Local Corrector: Can compute $P(a)$ when $\delta(f, P)<\frac{1}{4}-\epsilon$ making $\tilde{O}_{\epsilon}(\log n)$ queries.
- Thm 2: List-decoding bound: There are at most poly $\left(\epsilon^{-1}\right)$ linear functions P with $\delta(P, f) \leq \frac{1}{2}-\epsilon$
- Thm 3: Can be locally list-decoded with $\tilde{O}_{\epsilon}(\log n)$ queries.
- Natural directions:
- Higher degree? Larger S?
- Better LCCs over reals?

Thank you!

