Lecture Notes 7

- Reading: Gallian Chapter 5

1 Permutation Groups: Basics

- Def: A permutation group on a set A is a subgroup of $\operatorname{Sym}(A)$ (the set of permutations of A under composition).
- Examples:
- S_{n}
- D_{n} (two choices for A)
- $G L_{n}(\mathbb{R})$
[Technically, D_{n} and $G L_{n}(\mathbb{R})$ are only "isomorphic" to permutation groups on $[n]$ and \mathbb{R}^{n}, respectively.]
- Today we'll focus on $A=[n]=\{1, \ldots, n\}$, ie S_{n} and its subgroups.
- Running examples: $\sigma, \tau \in S_{7}$ defined by

$$
\sigma(1)=5, \sigma(2)=3, \sigma(3)=6, \sigma(4)=7, \sigma(5)=1, \sigma(6)=2, \sigma(7)=4,
$$

and

$$
\tau(1)=1, \tau(2)=2, \tau(3)=3, \tau(4)=6, \tau(5)=7, \tau(6)=5, \tau(7)=4
$$

- Array notation:

$$
\begin{aligned}
\sigma & =\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 3 & 6 & 7 & 1 & 2 & 4
\end{array}\right] \\
\tau & =\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 2 & 3 & 6 & 7 & 5 & 4
\end{array}\right] \\
\tau \circ \sigma & =\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]
\end{aligned}
$$

[^0]
2 Cycle Notation

- Def: An m-cycle is a permutation α for which there exist distinct i_{1}, \ldots, i_{m} such that $\alpha\left(i_{1}\right)=$ $i_{2}, \alpha\left(i_{2}\right)=i_{3}, \ldots, \alpha\left(i_{m-1}\right)=i_{m}, \alpha\left(i_{m}\right)=i_{1}$, and $\alpha(j)=j$ for all $j \notin\left\{i_{1}, \ldots, i_{m}\right\}$.
- Cycle notation: $\alpha=\left(i_{1} i_{2} \cdots i_{m}\right)=\left(i_{2} i_{3} \cdots i_{m} i_{1}\right)=\cdots$
- Examples:
- Q: What is the order of an m-cycle?
- Thm 5.1+: Every permutation in S_{n} can be written as a product of one or more disjoint cycles, whose union includes all elements of $[n]$. This representation is unique up to the order of the cycles (and cyclic shifts when writing the cycles).
- We usually don't write the 1-cycles!
- Proof by example: $\sigma=$
- Graphical view: View a permutation as a directed graph in which every vertex has indegree and outdegree 1 (possibly with self-loops). Such a graph consists of disjoint cycles.
- Q (Thm 5.3): How can we calculate the order of a permutation in terms of its cycles?
- Example: $\operatorname{order}(\sigma)=$
- Proof in general:

3 Transpositions

- Def: A transposition is a 2-cycle.
- Thm 5.4: Every permutation can be written as a product of transpositions.
- Not uniquely!
- Proof:
- Thm 5.5+:

1. (Even permutations) If a permutation σ has an even number of even-length cycles in disjoint cycle notation, then σ can only be written as product of an even number of transpositions. In such a case, σ is called an even permutation.
2. (Odd permutations) If a permutation σ has an odd number of even-length cycles in disjoint cycle notation, then σ can only be written as product of an odd number of transpositions. In such a case, σ is called an odd permutation.

- Proof: (different from book) Show by induction on n that if $\sigma=\alpha_{1} \cdots \alpha_{n}$ for transpositions α_{i}, then the parity of the number of even-length cycles in σ equals the parity of n.
- Base case $(n=0): \sigma$ consists of zero even-length cycles.
- Induction step: Consider what happens when we multiply a permutation $\sigma=\alpha_{1} \cdots \alpha_{n}$ by an additional transposition α_{n+1}. Let's do a case analysis depending on how $\alpha_{n+1}=(i j)$ intersects the disjoint cycles of σ.
* Case 1: i and j are both within the same cycle.
* Case 2: i and j are within different cycles.
- Cor: The set of even permutations in S_{n} is a subgroup, called the alternating group A_{n}.
- Q: What is $\left|A_{n}\right|$?

[^0]: ${ }^{1}$ These notes are copied mostly verbatim from the lecture notes from the Fall 2010 offering, authored by Prof. Salil Vadhan. I will attempt to update them, but apologies if some references to old dates and contents remain.

